Jets and the Hadronic Final State at HERA

Thomas Schörner-Sadenius Hamburg University (on behalf of H1 and ZEUS)

QCD04, Montpellier, 5-10 July 2004

More Measurements of α_s

From jet structure in DIS and γp

- Measurement of jet shape ψ and subjet multiplicity n_{sub}(y_{cut}).
- DIS: Q² > 125 GeV²
- E^L_T > 13 GeV
- Data well described by QCD MC models and NLO QCD calculations.
 Behaviour consistent with expectation from gluon contribution.
- Use of DIS <ψ(r=0.5)> averaged over all jets for α_s extraction:

 $\alpha_{s}(M_{z}) = 0.1176 \pm 0.0016 \pm 0.008$

 α_{s} from Jets at HERA Huge number of precise data

Jets in Global QCD Fits

ZEUS: First use of F2 AND jet data in fits

- Aim: Improve on high-x gluon.
- inclusive DIS jets (Q² > 125 GeV²) and γp dijets for direct photons (x_γ>0.75).
- Problem: Need NLO calculation; very time-consuming convolution needed many 1000 times:

$$\sigma_{jet} = \sum_{a=q,\overline{q},g} \int dx \ f_a(x,\mu_f) \ \hat{\sigma}_a(x,\alpha_s(\mu_r),\mu_f)$$

• Solution: Grid in (x, μ_f) for each crosssection bin and parton flavour; assume $f_a(x, \mu_f)$ flat in (x, μ_f) bin

No convolution needed!

CPU time: 36000s → 0.5s

 $\sigma_{jet}(x,\mu_f) \approx \widetilde{f}_a(x,\mu_f) \times \sum_{a=q,\overline{q},g} \int dx \ \hat{\sigma}_a(x,\alpha_s(\mu_r),\mu_f)$

QCD04, 6/7/2004

Jets in Fits ctd'

Improvement in gluon density \mathbf{xg} at hig x

- Striking difference between ZEUS-O and ZEUS-jets fits.
- Sum rules port improvement to values higher than 'jet-x'.
- Further improvements (besides larger data samples):
 - Charm data to supplement F₂^c.
 - Tevatron jet data for even higher x.

QCD04, 6/7/2004

Classification of Jet Events

DIS, Photoproduction, direct, resolved

DIS: $Q^2 >> 0$ GeV² **Photoproduction**: $Q^2 \sim 0$ GEV²

Resolved: hadronic constituent of **Direct:** photon couples to scattering. Photon couples to hard Large influence on event. Suppressed with increasing Q² scattering as a whole Jet Xv Jet XD Xp Jet Jet р

Note: Resolved photon contribution may mimic higher orders.

Jets: Problematic regions H1 5<Q²<100GeV²: **inclusive** dijets

Transition from γp to DIS

Forward Jets and π^0

Probing parton dynamics (evolution schemes of proton PDF)

 Remember: Forward (Muller-Navalet) jets used to hunt for signs of breakdown of standard DGLAP and onset of BFKL dynamics expected at low x.

Forward Jets, π^0 Only at high x, Q^2 NLO works for jets. For pions NLO good.

QCD04, 6/7/2004

TSS: Jets/HFS at HERA

Pentaquarks

 $K_{s}{}^{0}p$ and $\Xi\pi$ channels

- Recent observation of K⁺n or K⁰p resonances with positive strangeness at 1530 MeV consistent with pentaquark prediction uudds.
- Also Ξπ with ddssu possible candidate (Na49, 1862 MeV).
- Complication to search: PDG 'bumps' in the same channel (but never confirmed by any HEP experiment).
- Selection:
 - $K^0 \rightarrow \pi^+ \pi^-$.
 - p / pbar from dE/dx
 - Fit invariant mass distribution with 2 gaussians + BG function

TSS: Jets/HFS

Pentaquarks ctd'

 $K_s^{0}p$ and $\Xi\pi$ channels

Summary

QCD at HERA is a rich field

- HERA I data analysis in full glory
 - Many beautiful measurements; precise determinations of α_s .
 - Now turning towards more and more exclusive signatures (multidifferential measurements, exotics, jets+heavy flavours, etc.)
 - Statements in many cases not limited by experimental errors but by precision or even non-existence of theory (or tools).
 → parton dynamics, orders in α_s, resolved contributions etc.
- Working towards aim of having jet data in QCD fits. High HERA II statistics will allow even better measurements.

 \rightarrow Aim: Constrain gluon at high x.

 \rightarrow HERA can contribute to the LHC program.

HERA II: Looking forward to more beautiful measurements.

Many things cannot be shown here – no time \rightarrow see next slide!

Extras

- \rightarrow prompt photons in DIS and Photoproduction
- \rightarrow QCD Instantons
- \rightarrow Bose-Einstein correlations
- \rightarrow Event shapes in DIS
- \rightarrow Azimuthal asymmetries
- \rightarrow anti-deuteron production

Prompt Photons in DIS and γ**p**

Direct tests of hard dynamics

- Prompt photons largely insensitive to hadronisation
- Studied by many experiments; at HERA in photoproduction and DIS (ZEUS).
- Comparison of results to NLO pQCD calculations and PYTHIA/HERWIG MCs usually reasonable.
- $\begin{array}{l} \textbf{ZEUS in DIS (Q^2 > 35 \ GeV^2):} \\ clusters in barrel calorimeter \\ 5 < E_T^{\gamma} < 10 \ GeV, \ -0.7 < \eta^{\gamma} < 0.9 \\ E_t^{jet} > 6 \ GeV, \ -1.5 < \eta^{jet} < 1.8 \end{array}$
- Problem: π⁰ and η background. Perform statistical subtraction using cluster shapes in the calorimeter

Prompt Photons in DIS Good probe of hard dynamics; ~no hadronisation.

Isolated photon sample:

 σ = 5.64±0.58(stat)±0.6(syst) pb PYTHIA (HERWIG) factor 2 (8) off.

 E_{T} shape well described by PYTHIA and HERWIG; problems with η shape.

O($\alpha^{3}\alpha_{s}$): $\sigma = 1.33 \pm 0.07$ pb, (-30%).

MC: describes $E_{\tau}^{\gamma,jet}$ well, but rapidities?

Signatures:

 $ep \rightarrow e\gamma + X$

 $ep \rightarrow e_{\gamma}+jet+Y$

Prompt Photons in γ **p: Results**

Agreement H1-ZEUS (for inclusive prompt photons)

- NLO QCD describes H1 data reasonably well, except the forward direction (underlying event activity?)
- PYTHIA describes shapes well, but is 30% low.

Forward Jets ctd' ZEUS

QCD Instantons

Tunneling processes between different QCD vacua

- Characteristics:
 - Isotropic high-multiplicity final state
 - High transverse energy in HCM frame
- Procedure:
 - Standard DIS selection, Q² > 120 GeV²
 - Instanton enhancement
 - Discriminant variable to select instantons

Assuming conservatively that all data events are signal, a background-Independent upper limit of 26 pb at 95% CL has been found, compared To a prediction of 8.9 pb.

Bose-Einstein Correlations

in 1,2 dimensions in DIS. Dependence on Q^2 ?

- Correlation: $R(Q_{12}) = \alpha(1+\beta Q_{12})[1+\lambda exp(-r^2 Q_{12}^2)]$
- Calculate $R(Q_{12}) = \xi^{data} / \xi^{MC,noBE}$ to remove non-BE correlations (resonance decays etc.). $\xi = \rho(++,--)/\rho(+-)$

Within the experimental precision, no dependence on Q² can be observed (4 < Q² < 8000 GeV²) $\lambda = 0.475$, r = 0.666fm

The 2D fit suggests an elongated source shape, as predicted by the Lund model.

BE correlations are similar in DIS current and target regions.

Good agreement with other experiments is observed.

Event Shapes in DIS

in the Breit frame \rightarrow topology of HFS

- Thrust T, Broadening B, jet mass M² and C parameter allow test of QCD over wide energy range
- but: hadronisation corrections \rightarrow power corrections \rightarrow fit $\alpha_{s'}$, α_{0} !

Poor convergence of event shape vars in the 1+1 jet limit \rightarrow NLL resummation and various matching schemes with NLO.

Azimuthal Asymmetries

using an energy flow method

$$\frac{d\sigma^{ep \to ehX}}{d\phi} = 2A(0.5 + B\cos\phi + C\cos 2\phi + D\sin\phi + E\sin 2\phi)$$

Asymmetry receives contributions frm BGF and QCD events, polarization, parity violating weak interactions, intrinsic parton k_T .

Idea: Measure $\langle \cos\phi \rangle$ for various bins of pseudorapidity and compare distribution with models and NLO QCD calculations.

Anti-Deuteron Production

Comparison to pp and heavy ion rections

- Clear dE/dx signal for deuterons; good charge separation
 → 45 anti-d's, σ=2.7±0.5±0.2nb.
- Number of antideuterons ~ centra pp ISR collisions, but much lower than in Au-Au at RHIC. No heavier negative particles observed.
- Coalescence parameter B₂ much higher than in heavy ions at high energies → much smaller source volume in ep,pp?

$B2{=}0.010{\pm}0.002{\pm}0.001{\pm}0.002$

