

Katerina Lipka DESY Zeuthen

→ charm and beauty production

- \cdot open charm production cross sections, charm contribution to F_2
- open beauty production cross sections

- charm and beauty contributions to F_2 at high Q^2

evidence for an anti-charmed baryon state

QCD 2004 Montpellier

Heavy flavour production at HERA <u>et 27.5 Gev</u>

Dominated by Boson - Gluon Fusion (BGF) in LO: $\gamma g \rightarrow cc$ (bb)

ep kinematics: √s = 318 GeV

p 920 GeV

- 4-momentum transfer squared $Q^2 = -q^2$;
- Bjorken scaling variable $x = Q^2/(2 q P)$
- inelasticity y = qP/kP
- mass of the hadronic system W² = (P + q)²
 <u>Kinematic regimes:</u>
- $Q^2 < 1 \text{ GeV}^2$: Photoproduction, γp
- $Q^2 > 1 GeV^2$: Electroproduction, DIS

proton structure $\bigotimes \sigma_{\gamma g \to q \overline{q}} \bigotimes$ photon structure \bigotimes fragmentation function m_c, m_b \to hard scale for pQCD calculations

K. Lipka

Factorization:

- Heavy flavour production at HERA -

proton structure ($\otimes \sigma_{\gamma g \to q \overline{q}}$ (\otimes photon structure (\otimes fragmentation function

- proton structure:
 - CCFM evolution of PDF
 - DGLAP evolution of PDF
- photon structure:
 - direct (pointlike photon)
 - resolved (hadron-like photon)
 - heavy flavour excitation
- fragmentation: non-perturbative

(e.g. Peterson fragmentation)

pQCD NLO calculations

• "massive" approach ($Q^2 \approx m_c^2$, m_b^2)

massive c (b) produced in BGF

- DIS: HVQDIS
- Photoproduction: FMNR

• "massless" approach ($Q^2 \gg m_c^2$, m_b^2)

massless c (b) : active flavour in p or γ

Open charm tagging via D*

- tag charm in "golden" channel: $D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow K^- \pi^+ \pi_s^+$ (+ c.c.)
- apply "mass difference method": $\Delta M(D^*) = M(K \pi \pi_s) M(K \pi)$ **Photoproduction:**

DIS:

scattered electron in calorimeter

- electron escapes the main detector
- $Q^2 < 0.01 \text{ GeV}^2$ • $1 < Q^2 < 100 \text{ GeV}^2$, 0.05 < y < 0.7 "wrong charge D" : fake D⁰ (K⁺ π⁺/ K⁻ π⁻) + π_c ZEUS 1000 Entries per 0.5 MeV Combinations / 0.25 MeV ZEUS (prel.) 1998-2000 H1 2500 Backgr. wrong charge 800 $130 < W < 285 \text{ GeV}, Q^2 < 1 \text{ GeV}^2$ $K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\pm}$ 2000 wrong charge D 600 1500 400 1000 200 500 0 0.13 0.14 0.15 0.16 0.17 0 0.14 0.15 0.16 ΔM_{n*} [GeV] $M(K\pi\pi_{a}) - M(K\pi)$ (GeV)

consistent with

NLO calculations (massive)

theoretical uncertainties due to:

- proton PDF
- charm mass
- renormalization/factorization scale
- fragmentation

Charm contribution to proton structure function F_2

K. Lipka

- Heavy flavour production at HERA -

QCD04 Montpellier, France

Open Beauty Production Measurement

Technique: inclusive semileptonic decays: $e^+p \rightarrow e^+$ bbX $\rightarrow e^+$ + jet + μ^{\pm} + X

- large b mass \rightarrow muon p_{t} relative to the associated jet
- long b lifetime \rightarrow impact parameter δ (measured with H1 Central Silicon Tracker)

- Heavy flavour production at HERA -

Open Beauty Production Cross Sections

Consistent with the (massive) NLO calculation

Charm and Beauty Contributions to F_2 at high Q^2

Charm spectroscopy: exotic anti-charmed baryon state

search inspired by discoveries of the strange pentaquark: why not charm? Experimentally suited signature: decay in $D^{*-}p(D^{*+}\overline{p})$, data : DIS, L_{int} = 75 pb⁻¹

Proton selection using dE/dx measurement

used for background suppression

D*p Mass Distribution

use mass difference method: $M(D^*p)=m(K \pi \pi p)-m(K \pi \pi)+M_{PDG}(D^*)$

narrow resonance observed : M=3099± 3(stat.) ± 5 (syst.) MeV

- $\boldsymbol{\cdot}$ equally significant signal visible in separate $D^{**}\bar{p}$ and $D^{*-}p$
- signal visible in different data taking periods
- no significant enhancement visible in like-charge D*p

A Typical Event

Does the resonance come from D*?

the (D*p) signal region is richer in D*

Is the physics different in D*p signal region?

look into momentum distribution of proton candidates without dE/dx cut

momentum distribution in the signal region is harder than in sidebands

D*p signal observed in photoproduction

Photoproduction more difficult due to large non-charm background

but

independent confirmation of the signal

Significance Estimate

Significance estimate based on the background only hypothesis (binning free)

Background fluctuation probability: 4×10^{-8} (Poisson) = 5.4 σ (Gauss)

Search for D*p signal at ZEUS

DIS D* sample 1995-2000, Q² > 1 GeV², selected ~ 9700 D*
 – p_T(D*) > 1.35 GeV, |η_{D*}| < 1.6, dE/dx (p) <1/P(p)² +1.2

- no evidence for a signal at 3.1 GeV

Photoproduction (~ 43000 D* candidates): no evidence for a signal at 3.1 GeV

Summary

- visible open charm cross sections in DIS
 - NLO DGLAP agrees with HERA data
- recent F_2^{c} measurement
 - good agreement with NLO fits to inclusive data
 - \rightarrow constrain on the gluon density
 - large charm contribution to F_2
- visible beauty cross sections
 - consistent with NLO pQCD expectation
- charm and beauty contribution to F_2 at high Q^2
 - agreement with NLO pQCD fit to inclusive data
- evidence for an exotic anti-charmed baryon state at H1
 - decay into D*-p (+c.c.): quark content uudd<u>c</u> (+c.c.)
 - not confirmed by ZEUS

Outlook: HERA-II is on the way

Thank you!

Spare slides

Charm and Beauty Contributions to F_2 at high Q^2

Technique: flavour separation via lifetime of decay products

- Kinematics: Q² > 110 GeV², 0.07 < y < 0.7
- Lifetime: indirect measurement via inclusive impact parameter δ (using H1 CST)
- Parameters: track significance S₁ and S₂
 - $S_1 = \delta/\sigma(\delta)$ highest significance track,
 - $S_2 2^{nd}$ highest significance track
- Simultaneous fit to S_1 and S_2 :

quark fractions, differential cross sections, Contributions to F2 consistent with $\rightarrow \text{extract F}_{2}$, F2

- NLO QCD fits, (massless scheme for c, b)
- ZEUS measurement (tagging via D*±)

HERA data agree with e^+e^- : universality of charm fragmentation

Reconstruction of D-mesons

D* is more feasible for such analysis !

Signal is there for well identified protons

Summary of anti-charmed baryon state

Narrow resonance in D*p observed in DIS at H1:

- Mass of 3099± 3 (stat.) ± 5 (syst.) MeV
- RMS width of the resonance is 12 ± 3(stat.) MeV (consistent with the experimental resolution)
- The background fluctuation probability is smaller than $4*10^{-8}$
- The signal is also observed in an independent photoproduction sample
- Data have been subjected to many kinematical tests which are all found to be only consistent with the D*p hypothesis.
- Possible interpretation: anti-charmed baryon decaying to D*- p (+ c.c.)
- Minimal quark content: uuddc \rightarrow candidate for a charmed pentaquark

PRELIMINARY result of searches at ZEUS: no confirmation

Further investigations of the D*p resonance

- Events are scanned: no anomalies found
- Acceptance effects: looks OK
- Reflections from D_1 , $D_2 \rightarrow D^*\pi$ (ecpect 3.5 events in D^*p signal): no!
- All possible mass correlations among the particles making the D* and the D*p system have been investigated
 - search for real or fake peak structures, e.g $\Lambda, \, \Delta$, Δ $\ ...$ no enhancement
- All possible mass hypotheses have been applied to the particles making the D* and the D*p system (+ corresponding mass correlations) studied
 - search for real or fake peak structures, e.g K , ϕ , f ... no enhancement
- All possible mass correlations among the proton candidate the remaining charged particles of the event with all possible mass assignments have been looked at
 - search for real or fake peak structures, e.g K , ϕ , Δ , Δ ... no enhancement

All tests we could think of are passed !