

Structure Functions and Parton Densities at HERA

Chris Collins-Tooth For the H1 and ZEUS collaborations

Deep Inelastic Scattering at HERA

DIS kinematic variables:	
$Q^2 = -q^2 = -(k-k')^2$	
$x=Q^2/2p.q$	y=p.q/p.k
$s=(p+k)^2$	$Q^2 = x \cdot y \cdot s$

- Q² is the negative square of the 4momentum transfer (probing power)
- x is the fraction of incident proton momentum carried by struck quark.

• y is the fractional energy transfer to the proton in its' rest frame; it is related to the CM scattering angle θ^* by : $y = \frac{1 - \cos \theta^*}{2}$

DIS cross sections

• CC cross section:

$$\frac{d^2 \sigma^{CC}(e^{\pm} p)}{dx dQ^2} = \frac{G_F^2}{4\pi x} \frac{M_W^4}{(Q^2 + M_W^2)^2} \left[Y_+ F_2^{CC} - y^2 F_L^{CC} \mp Y_- x F_3^{CC} \right]$$
$$\tilde{\sigma}^{CC}(x, Q^2) = \text{reduced CC xsec.}$$

F₂ measurements

$$F_2 \propto \sum_q e_q^2 x \left(q + \overline{q}\right)$$

- F₂ measurements to within ~2-3%
- F₂ sensitive to sum of quarks and antiquarks
- Scaling violations largest at low-*x*, mainly due to gluon
- Gluons radiate $q\overline{q}$ pairs (QCD); hence $\frac{9}{2}$ F_2 sensitive to gluon $\frac{1}{2}$ density.

ZEUS F_L measurement

as a function of *y*.

ZEUS F_L measurement

ZEUS

Х

H1 F_L measurements

- H1: 'shape' method for each Q^2 bin, use shape of cross section.
- At high-y, driven by y^2/Y_+ , and by $F_L(Q^2)$..
- $F_L(Q^2)$ is an assumption.
- Also assumes $F_2 \sim x^{-\lambda}$ at fixed Q2.
- $\tilde{\sigma}$ in each bin parameterised as:

$$\widetilde{\sigma}_{FIT} = c \cdot x^{-\lambda} - \frac{y^2}{Y_+} F_L$$

- Fit for one F_L point per Q^2 bin with c, λ and F_L free.
- Fits describe data well.

Neutral current cross sections

- NC processes predominantly measure *u* valence
- *e*+*p* and *e*-*p* cross section differences provide information on *x*F₃
- xF_3 has greatest effect at high $Q^{2^{10}}$

High Q^2 measurements – xF_3

- Uncertainties dominated by statistics of *e p* sample
- HERA measurements on a pure proton target

Charged current cross sections

- CC processes give flavour information
- Measurements of high-x u and d valence densities

HERA Polarised Charged Current

- Lepton beam at HERA now set up for polarisation.
- Spins naturally polarise transverse to beam dir. due to synchrotron radiation and *Sokolov-Ternov* effect.
- Begun to make first polarised measurements..

Parton densities

- PDFs are generally determined as follows:
 - decide on distributions to be determined, eg. u,d valence, Sea, gluon etc.
 - parameterise those distns. in x (at some value of $Q^2 = Q_0^2$), with an assumed set of PDFs
 - evolve the PDFs in Q^2 (e.g. with DGLAP eqns) to obtain a grid of values in x, Q^2
 - convolute PDFs with coefficient functions to give structure functions and cross sections
 - fit the result to structure function data by minimizing a χ^2
- H1& ZEUS make different choices at many stages of the fitting procedure.

ZEUS-S (2002) 'global' fit

- ZEUS 96/97 NC *e*⁺ data
- Fixed target data from: BCDMS, E665, NMC (Deut. and P targets) CCFR (Fe target)
- Corrections applied to to D and Fe data
- Uncertainty mainly from systematics of many expts, targets etc.
- Compares well to CTEQ, MRST
- Phys. Rev. D67 012007 (2003), hep-ex/0208023
- Available on Durham HEPDATA
 <u>http://durpdg.dur.ac.uk/hepdata/zeus2002.html</u>

ZEUS-Only fit results

- Lack of information means we fix high-x Sea and gluon to the global S-fit values.
- 10 free parameters
- Fit has uncertainties dominated by statistics, not systematics.
- HERA-II data should improve this fit

ZEUS-Only + JETS fit

- Instead of fixing high-*x* gluon, keep it free.
- Add in 30 pb⁻¹ 96/97 published ZEUS JET data.
 - EPJ C23(2002) 4, p615
 - Phys. Lett. B 547 (2002), p164
- Improvement quite striking for mid & high-*x* gluon.

(11 parameter fits)

H1 PDF2000 fit

- Total 621 measurements
- H1 parameterise the distributions: ^{0.6} g,U=u+c, D=d+s, U, D (since these ^{0.4} do not require sep. of u,d valence) ^{0.2}
- Parameterised distributions $^{0.8}$ evolved in Q^2 , convoluted with $^{0.6}_{0.4}$ coefficient functions and compared $^{0.2}_{0.2}$ to data.
- H1 also do a fit including BCDMS μP data for α_s determination

Summary

- The H1 PDF2000 fit, ZEUS-S $\bigcirc_{0.9}^{1}$ and CTEQ6.1 are in reasonable agreement, given the different data and fitting models.
- New data from HERA-II offers polarised data, more lumi, and the possibility of better fits with well understood systematic uncertainties.
- Including Jet data (+ possibly F2charm data) should also improve the fits.

