ZEUS Status Report — Recent Results and Progress PRC, DESY

Richard Hall-Wilton (University College London)

- Running Conditions
- Detector Status
- Results from Recent Data
- Physics Highlights
- Summary

ZEUS Background levels

 At the last PRC the extrapolated backgrounds at high beam currents above the safe operating level for the CTD

Pumping procedure and cleaning with beam has cleared up the proton background problems

Even at maximum anticipated beam currents, below the CTD safe operating level

▷ Proton Background problems solved!

2

Luminosity since the last PRC

- HERA delivered 51 pb^{-1}
- ZEUS taken 22 pb^{-1}

▷ A closer look at the efficiency

Luminosity Delivered per Week

- \bullet ZEUS efficiency started at \sim 40%
- Presently 50 60%
- CTD HV required to be on for data taking

 Nearly all data taken can be used for physics

PRC

ZEUS Efficiency — Examples of good and bad fills

- Fills from Last Week
- Bad Fill
 - ▶ ZEUS Efficiency 47%
 - Regular trips

Half way through the fill CTD became inoperable

• Good Fill

▶ ZEUS Efficiency - 68%

Occasional Trips

▷ DAQ Deadtime (15%) beginning of fill, 5% later)

Occasional DAQ glitches

Loss before detector is on

CTD CURRENT
 HERA DELIVERED LUMINOSITY
 ZEUS GATED LUMINOSITY

More typical since last weekend

ZEUS Efficiency — Improvements

• Beam conditions become very spiky as the fill ages

- ▷ Working closely with HERA to solve this
- CTD trip thresholds have been increased to reduce sensitivity
- Provided information on the spikes to HERA
- ▷ Large effort from HERA → Conditions are improving
- DAQ Deadtime

PRC

- Caused by huge size of events in DAQ system due to background
- Solution: Use new Global Tracking Trigger at SLT to reject these events
- Fully implemented by the end of this week
- DAQ Glitches
 - Problems identified
 - Efficiency is improving
- Improving luminosity procedure

Luminosity Monitor Upgrade — 6m Tagger Status

 \bullet Necessary to achieve 1% precision

 $\triangleright \gamma$ -Cal energy calibration

Spectrometer acceptance calibration

- Rebuilt and installed in November
- Data in coincidence with Spectrometer:
 Energy sum within 1%
- Final integration with γ calorimeter trigger $_{\rm f}$ ongoing

Micro Vertex Detector

- No evidence of significant radiation damage during routine HERA operation
 - Mean signal size stable (S/N 12)

Uncontrolled Proton beam loss (4 Nov) caused 10[%] drop in signal

 \triangleright Enormous effort from HERA to reduce this risk (exp. < 1 to end of HERA)

Noise shows shallow slope

Corresponds to 6 kRad in 500 days on innermost cylinder

- 25 kRad expected by end of HERA II
- Front End Chips tested to 300 kRad
- > Do not expect major damage from

radiation

 \triangleright Bad channels stable < 2%

 \triangleright First physics results using MVD ...

Straw Tube Tracker

- After major work on STT during last summers shutdown: ¹⁶⁰
- STT stable and included in luminosity running
 - STT running at full voltage since December
 - > 3/48 sectors have low efficiency (though stable)
 - ▷ Not a problem for track finding as there is redundancy
 - Being implemented into SLT (GTT)
- Work ongoing to tune the tracking
 - Number of hits indicate high efficiency of pattern recognition

Recent Data — STT Tracking

- Selecting low multiplicity events from Data to tune the Monte Carlo
- STT matching with CTD and MVD found tracks ongoing

PRC

Recent Data — Neutral Current

- \bullet Neutral Current, ${\rm Q}^2>$ 200 ${\rm GeV}^2$
 - $ightarrow \sim$ 15000 events for 6.7 pb $^{-1}$
 - Preliminary result for Moriond EW
- Monte Carlo describes Data well

Understand and model the observed hadronic and electon final states

Also confirms the luminosity measurement

Recent Data — J/\psi and D^{*} Production

Recent Data — D^+ Signal

• Use the MVD to tag secondary vertices from charm:

 Can define a significance of seperation of
 No signal visible before secondary and primary vertices:
 Signal ophonood by out

$$\vec{L} = \vec{S} - \vec{P}$$

• Signal enhanced by cutting on significance parameter \rightarrow Encouraging!

Richard Hall-Wilton, UCL

 $P \qquad S \qquad \pi^+ \qquad \pi^- \qquad \pi^$

Recent Data — Charged Current

$$Q^2$$
 = 3433 GeV², $₽_T$ = 45 GeV

Polarised Charged Current Cross Section

ZEUS

Spin direction was changed 1 April

27th May 2004

Recent ZEUS Physics Output

- 12 new papers since last PRC \rightarrow
- DIS04: 15 new preliminary results
- 55 abstracts submitted to ICHEP
 - 4 abstracts on HERA II data
- Have a look at some of the highlights from recent results now ...

- 1. Instantons
- 2. Beauty photoproduction at HERA
- 3. High Q2 Neutral Current Cross Sections in e+p DIS at root(s)=318 GeV
- 4. Search for Contact Interactions, large extra dimensions, fi nite quark radius
- 5. Photoproduction of D* Mesons associated with a Leading Neutron
- 6. Observation of Isolated High ET Photons in DIS
- 7. Pion Trajectory
- 8. Exclusive Electroproduction of J/Psi Mesons at HERA
- 9. The dependence of dijet production on photon virtuality at HERA
- 10. Evidence for a narrow baryonic state decaying to Ks (anti)proton
- 11. Beauty in DIS
- 12. Substructure dependence of jet cross sections and determination of alphas

Strange Pentaquarks

- Accepted by Phys. Lett. B
- Select p \mathbf{K}^0_s combinations

• Peak at 1521.5
$$\pm$$
 1.5 $^{+2.8}_{-1.7}$ MeV

Width above but compatible with experimental resolution

Signal present in both charge combinations

• Interpreted as Θ^{\pm} pentaquark

 \triangleright Significance \sim 4.6 σ

 Pentaquark spectroscopy and searches become an active area of physics at HERA

27th May 2004

Entries / 7.5 MeV/c²

1.4

1.6

27th May 2004

1.8

Pentaquark searches

40

20

0[∟] 1.4

1.6

peak=1533.5±1.4 MeV σ**=7.6±2.4 MeV**

1.8

anticipated NA49 signal

2

2.2

2.4

• NA49 report resonance in $\Xi^0\pi$ at 1.862 GeV ▷ Signal / Ξ^0 (1530) \sim 6 - 8

ZEUS sees no evidence of a signal

▷ Clearer Ξ^0 (1530) signal

Larger statistics and smaller background

2.6

2.8 **Μ(Ξ**π)(GeV)

Charm Pentaquark Search

• H1 has reported resonance at 3.1 GeV in $M(D^*p)$

Interpreted as charmed pentaguark

ZEUS

 Search by ZEUS shows no evidence for signal at 3.1 GeV \triangleright Inclusive D^{*} sample \sim 43000 \triangleright DIS D^{*} sample \sim 9700

> 20000 W S 18000

နို 16000

14000 U 12000

10000 8000

> 6000 4000

> 2000 0

ZEUS

ZEUS (prel.) 1995-2000

L backgr. wrong charge

 $N(D^{*\pm}) = 42730 \pm 350$

(126.5 pb⁻¹

3.1

3.15

3.2

 $M(D^*p) = \Delta M^{ext} + M(D^{*+})_{PDG} (GeV)$

3.25 3.3

Richard Hall-Wilton, UCL

Beauty Production at HERA

ZEUS Papers published on beauty pro-10³ (pb/GeV) 10³ 10³ 10 do/dp^b_T(ep→ebX) duction in DIS and PhP Q²<1GeV² 0.2<y<0.8 ▷ PhP: subm to Phys. Rev. D |η^b|< 2 ▷ DIS: subm to Phys. Lett. B ZEUS 96-00 b→µ • PhP result: O ZEUS 96-97 b→e Good agreement with NLO 1 NLO QCD **b** Cross Sections at HERA 10 Theory & **A** ZEUS $\sigma_{vis}(jj\mu X) p_T^{rel}$ -1.6 < η_u < -0.9, p^{μ} > 2.5 GeV 5 10 25 15 20 30 ZEUS $\sigma_{vis}(jj\mu X) p_T^{rel}$ -0.9 < η_{μ} < 1.3, p_T^{μ} > 2.5 GeV p^b_T (GeV) $\sigma_{vis}(jj\mu X) p_T^{rel}$ 1.48 < η_{μ} < 2.3, p^{μ} > 4 GeV, p_T^{μ} > 1 GeV ZEUS Data σ_{vis}(jjμX) Imp.-Par.⊗ p^{rel}_T (prel.) DIS result - 1st publication on this topic σ_{vin}(ejμX) Imp.-Par.⊗ p^{rel}_τ (prel.) ★ ZEUS σ_{vis}(ejμX) p_T • HERA I message on beauty production: 3 Good agreement between data and NLO pQCD 1 10^{2} 10 1 Q^2 [GeV²]

Exclusive J/\psi Production in DIS

- All of HERA I Data published (paper subm. to Nucl. Phys. B)
- Precision of the data impressive
- J/ ψ \rightarrow pQCD should be applicable
- Cross Section sensitive to gluons $ho \sigma \propto ({
 m gluon})^2$

Data distinguishes between PDF fits

▷ Clear sensitivity to the gluon

Need NLO to be able to constrain the gluon with the data

ZEUS

PRC

Charged and Neutral Current DIS Cross Section Measurements

 Charged and Neutral Current Cross sections for e⁺p and e⁻p published

$$ullet$$
 Above Q $^2\sim$ 10000 GeV 2

Electroweak Unification

- Standard model excellent description of the data
- Complete picture from HERA I
 Use this data in QCD fits

PRC

New QCD Fits

ZEUS

- Add high Q² data into ZEUS- Only structure function fit
 - ▷ Full ZEUS HERA I data set
 ▷ All 94-00 e[±]p Data
- Compare to published ZEUS-S
 - Include Fixed target data
 - 94-98 ZEUS Data
- Good agreement
 - ZEUS-Only Fit still needs additional constraint for x > 0.1
 - ▷ HERA II Data at high x
 - ▷ Use jets data in the fit

Richard Hall-Wilton, UCL

Adding ZEUS Jet Data to QCD Fits

- Very precise jet data from ZEUS
- Include ZEUS jet data in QCD fits
 - Rigorous
 - Inclusive DIS jet data
 - ▷ High E $_T$ dijet PhP Data (x $_\gamma$ >0.75)
- Compare ZEUS-Only fit with + without jet data
 - Jet data constrain gluon at medium x
 - Improved precision at high x

Adding ZEUS Jet Data to QCD Fits

- DIS Jet data used in the QCD fit
 - ▷ Fit describes the data well
- Note precision of cross sections

 \triangleright Jet energy scale uncertainty 1%

ZEUS

Jet Substructure

- QCD predicts: gluon initiated jets broader than quark initiated jets (narrow)
- The scattering angle θ^{\star} sensitive to spin of exchanged particle

Use dijet events to investigate the underlying parton dynamics

α_s Measurements from ZEUS

• Large number of α_s measurements from ZEUS

▷ Compatible with world aver-

age

PRC

World average does not include ZEUS measurements

Individual measurements competitive with world average

Inclusive jet cross sections in yp ZEUS (Phys Lett B 560 (2003) 7) Subjet multiplicity in CC DIS **ZEUS (Eur Phys Jour C 31 (2003) 149)** Subjet multiplicity in NC DIS ZEUS (Phys Lett B 558 (2003) 41) Jet shapes in NC DIS ZEUS (DESY 04-072 - hep-ex/0405065) NLO OCD fit ZEUS (Phys Rev D 67 (2003) 012007) **Inclusive jet cross sections in NC DIS** ZEUS (Phys Lett B 547 (2002) 164) **Dijet cross sections in NC DIS ZEUS (Phys Lett B 507 (2001) 70)** World average (S. Bethke, hep-ex/0211012) 0.12 0.14 $\alpha_{s}(M_{7})$

0.1

Outlook

• Vast improvement in beam conditions and luminosity

- Enormous efforts by HERA
- Very good cooperation between HERA and all experiments
- ▷ Thanks to HERA as well as H1 and HERMES
- Detector in good shape, efficiency improving
- Wealth of results from HERA I data and ...
- First results from HERA II coming in.
- Looking forward to running with electrons later this year!!

