<u>Charm production in ep interactions at HERA</u> and <u>Evidence for a narrow exotic anti-charmed</u> <u>baryon state at H1</u>

Katerina Lipka (H1) DESY Zeuthen

for the H1 and ZEUS Collaborations

\implies open charm production

- cross section
- charm contribution to the proton structure function
- fragmentation fractions and ratios

→ first evidence for an anti-charmed baryon state

Moriond QCD 2004

Open charm production in ep scattering

dominated by

Boson-Gluon Fusion (BGF): $m_c \longrightarrow$ hard scale for pQCD calculations

- extract gluon density in the proton
- study the γ^* structure
- study fragmentation process
- charm spectroscopy

ep kinematics

- momentum transfer squared $Q^2 = -q^2$;
- Bjorken scaling variable $x = Q^2/(2 q p)$
- inelasticity y = qp/kp
- $\gamma p CMS$ energy $W^2 = (p + q)^2$
 - fragmentation: D kinematics
- pseudorapidity $\eta = -\ln(\tan \theta_D/2)$;
- transverse momentum p_t(D)
- D production elasticity $z = (E-p_z)_D/2yE_e$

HERA: p(920 GeV) e (27.5 GeV)

 $\int s = 320 \text{ GeV} (\text{from 1998 on})$

Models for charm production

• proton structure:

- CCFM evolution of PDF
- DGLAP evolution of PDF

• photon structure:

fragmentation: non-perturbative models

(e.g. Peterson fragmentation)

Calculations in DGLAP sheme

pQCD NLO:

fixed order "massive" approach

- massive charm produced in BGF
- valid for $Q \approx m_c$
- DIS: HVQDIS
- Photoproduction: FMNR

resummed calculation in NLL:

all orders "massless" approach

- massless charm as an active flavor
- of proton or photon
- valid for Q $\gg \rm m_{c}$

Open charm tagging via D*

- tag charm in "golden" channel: $D^{*+} \rightarrow D^0 \pi_{5} \rightarrow K^{-} \pi^{+} \pi_{5}^{+}$ (+ c.c.)
- apply "mass difference method": $\Delta M(D^*) = M(K \pi \pi_s) M(K \pi)$ **Photoproduction:**

DIS:

scattered electron in calorimeter

• $2 < Q^2 < 100 \text{ GeV}^2$, 0.05 < y < 0.7

- electron escapes the main detector
- $Q^2 < 0.01 \, GeV^2$
- visible range: $p_{+}(D^{*}) > 2.5 \text{ GeV}, |\eta_{D^{*}}| < 1.5$

Differential DIS cross section

consistent with NLO calculations

theoretical uncertainties due to:

- proton PDF
- charm mass
- renormalization/factorization scale
- fragmentation

Photoproduction cross section

NLO calculations: large theoretical uncertainties

not yet possible to distinguish between different charm treatments

Charm fragmentation

measurement of D^0 , D^{\pm} , D^{\pm} , D^{\star} , Λ^{\pm}_{c} cross sections:

HERA data agree with e^+e^- : universality of charm fragmentation

<u>Summary of selected results on open charm</u> <u>production</u>

- visible DIS cross sections
 - NLO DGLAP agrees with HERA data
- recent F_2^c measurement
 - good agreement with NLO fits to inclusive data
 - direct test of gluon density
 - large charm contribution to F₂
- visible photoproduction cross section
 - still a challenge for the theory
- charm fragmentation
 - fragmentation ratios agree with world data
 - universality of charm fragmentation

Evidence for a narrow anti-charmed baryon

inspired by the recent discoveries of the strange pentaquark

Narrow resonance observed in (K N) - start of the pentaquark Era

- mass around 1540 MeV
- \cdot minimal quark content uudd \bar{s}
- \cdot interpreted as pentaguark Θ^+

Why not look for charming exotics?

Search for a possible signature in $D^{*-}p$ and $D^{*+}\overline{p}$ combinations

D* Candidate Selection

now combine this D* with a charged particle assigned the proton mass

Particle ID via ionisation loss measurement

dE/dx used for background suppression

Final proton selection: L(p)>0.1 at p(p)>2 GeV L(p)>0.3 at p(p)<2 GeV

D*p mass distribution: DIS 1996 - 2000

use mass difference method again: $M(D^*p)=m(K \pi \pi p)-m(K \pi \pi)+M_{PDG}(D^*)$

narrow resonance observed : M=3099± 3(stat.) ± 5 (syst.) MeV

- equally significant signal visible in separate $D^{*+}\overline{p}$ and $D^{*-}p$
- signal visible in different data taking periods
- no significant enhancement visible in like-charge D*p

Look into low momentum protons

Signal is there for well identified protons

Is the physics different in the (D*p) signal region?

look into momentum distribution of proton candidates without dE/dx cut

momentum distribution in the signal region is harder than in sidebands look into D*p combinations

D*p in photoproduction

Photoproduction more difficult due to large non-charm background

but

independent confirmation of the signal

Significance estimate

• Significance estimate based on the background only hypothesis $N_b = 51.7\pm2.7$

- Use of different background functions as well as the background model from data and MC
- Significance determined in a binning free method
- \rightarrow Background fluctuation probability <u>4 x 10⁻⁸</u> (Poisson) = 5.4 σ (Gauss)
- Change in likelihood of the two fits: 6.2 σ

Search for charmed pentaguark in ZEUS

- DIS D* sample 1995-2000, Q²>1 GeV²: ~9700 D*
- $p_T(D^*) > 1.35$ GeV, $|\eta_{D^*}| < 1.6$, p (dE/dx) and D*p cuts similar to H1

no evidence for a signal at 3.1 GeV

Search for charmed pentaguark in ZEUS

- ZEUS inclusive D* sample 1995-2000: ~43000 D*
- same D*, p and D*p cuts as for DIS selection

no evidence for a signal at 3.1 GeV

Summary of anti-charmed baryon state

Narrow resonance in D*p observed in DIS at H1:

- Mass of 3099± 3 (stat.) ± 5 (syst.) MeV
- RMS width of the resonance is $12 \pm 3(\text{stat.})$ MeV (consistent with the experimental resolution)
- The background fluctuation probability is smaller than 4*10⁻⁸
- The signal is also observed in an independent photoproduction sample
- Data have been subjected to many kinematical tests which are all found to be only consistent with the D*p hypothesis.
- Possible interpretation: anti-charmed baryon decaying to D*- p (+ c.c.)
- Minimal quark content: uudd $\bar{c} \rightarrow$ candidate for a charmed pentaquark

PRELIMINARY result of searches at ZEUS: no confirmation