

Measurements of Proton Structure Functions at Low Q² at HERA

- Deep Inelastic Scattering at HERA
- Measurements of F₂ in Shifted Vertex and Radiative Events
- Extraction of F_L

Deep Inelastic Scattering

cms energy
$$\sqrt{s} = \sqrt{(l+p)^2} \approx 300 \,\text{GeV}$$

photon virtuality $Q^2 = -(l - l')^2$

Bjorken variable
$$x = \frac{Q^2}{2p \cdot (l - l')}$$

Inelasticity $y \approx \frac{Q^2}{xs}$

Invariant mass of the
$$W = \sqrt{Q^2 \frac{1-x}{x} + m_p^2}$$

Structure Functions in DIS

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}Q^2} = \frac{2\pi\alpha^2}{Q^4x} \left(Y_+ F_2(x, Q^2) - y^2 \cdot F_L(x, Q^2) \right) \qquad Y_+ = 1 + (1 - y)^2$$

- $F_2(x, Q^2) = x \sum_i e_i^2 [\mathbf{q}_i(x, Q^2) + \bar{\mathbf{q}}_i(x, Q^2)]$
 - dominant contribution
 - sensitive to quark content [indirect sensitivity to gluon density via scaling violation]
- $F_L(x,Q^2)$
 - contributes significantly only at high y
 - **QPM:** $F_L = 0$
 - **QCD:** $F_L \propto \alpha_S g$
 - directly sensitive to gluon density

Accessible Phase Space

- Medium-high Q²:
- asymptotic freedom
- perturbative QCD

Low Q^2 :

- transition to soft hadronic physics
- $\alpha_{s}(Q^{2})$ becomes large
- phenomenological models

4

Experimental Techniques at Low Q²

Possibilities to access lower Q^2 :

- larger polar angles
- lower initial electron energy

Experimental Techniques at Low Q²

Initial State Radiation (ISR)

Shifted Vertex and Previous Results at low Q²

Initial State Radiation (ISR)

- γ is radiated from incoming e
- equivalent to inclusive DIS at reduced $s = 4E_eE_p$

•
$$Q^2 = sxy$$

 \Rightarrow higher x at fixed Q²

Previous measurements:

• γ directly detected

Untagged ISR in Shifted Vertex (HI)

Kinematics:

• E - p_z is used to determine initial electron energy

$$2E_e = (E - p_z)_{had} + (E - p_z)_{e'}$$

• γp background rejected by BST

F₂ in Shifted Vertex ISR

Inelastic QED Compton Events

- low virtuality of the exchanged photon
 - \Rightarrow access to low Q²
- high virtuality of the exchanged electron
- DIS background: π^0 fakes QEDC γ - dominates QEDC signature at low x

Inelastic QED Compton Events

Medium - high x are measured

- understanding of hadronic final state at low W
- use of SOPHIA Monte Carlo model

F₂ Measurement with QEDC Events

good agreement with fixed target experiments

Overview F₂

• QEDC:

- $0.5 < Q^2 < 7 \,\mathrm{GeV}^2$ $2 \cdot 10^{-3} \lesssim x \lesssim 0.1$
- shifted vertex ISR: $0.35 < Q^2 < 0.85 \,\mathrm{GeV}^2$ $10^{-4} \lesssim x \lesssim 5 \cdot 10^{-3}$

Rise of F_2 at Low x

- derivative independent of x for x < 0.01
- rise of F₂ well parameterised by

$$F_2(x, Q^2) = c(Q^2) x^{-\lambda(Q^2)}$$

) at
$$Q^2 \gtrsim 3 \, {
m GeV}^2$$
 :

```
\lambda \propto \ln Q^2, c \approx \text{const}
```

partonic degrees of freedom

• at
$$Q^2 \lesssim 1 \, {
m GeV}^2$$
 :

 $\lambda(Q^2) \to 0.08$

transition to hadronic degrees of freedom

Extraction of F_L

$$\sigma_r = \frac{Q^4 x}{2\pi \alpha^2 Y_+} \cdot \frac{\mathrm{d}^2 \sigma}{\mathrm{d}x \mathrm{d}Q^2} = F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2) \qquad Y_+ = 1 + (1 - y)^2$$

- data sensitive at highest y only
- direct measurement requires data at different s

• shape method

F_L extraction: Derivative Method

$$\left. \frac{\partial \sigma_r}{\partial \ln y} \right|_{Q^2} = \left. \frac{\partial F_2}{\partial \ln y} \right|_{Q^2} - \frac{2y^2(2-y)}{Y_+^2} F_L$$

 \Rightarrow deviation from linear behaviour is attributed to F_{μ}

F_L extraction: Shape Method

good description of cross section in full kinematic range

Shape Method vs. Derivative Method

shape method provides higher precision

$F_L(Q^2)$ at fixed y = 0.75

New structure function measurements at low Q^2

F₂: phase space extended towards higher x

untagged ISR in shifted vertex $0.35 < Q^2 < 0.85 \,\mathrm{GeV}^2$ $10^{-4} \lesssim x \lesssim 5 \cdot 10^{-3}$ inelastic QEDC scattering $0.5 < Q^2 < 7 \,\text{GeV}^2$ $2 \cdot 10^{-3} \lesssim x \lesssim 0.1$

F_{L} : positive for $Q^{2} > 0.75 \,\mathrm{GeV}^{2}$