Studies of Diffractive Final States at H1

Roger Wolf

University of Heidelberg for the H1 Collaboration

Low X meeting: Prague, Czech Republic, 15.-18.09.2004

Diffraction at H1

Kinematics of Diffraction

Kinematics of Diffraction

 $\begin{aligned} \textbf{X}_{IP} : \text{long momentum fraction of the colorless exchange relative to the Proton.} \\ \boldsymbol{\beta} : \textbf{x}_{Bj} \text{ rel. to colorless exchange.} \end{aligned}$

Z_{IP}: longitudinal momentum fraction of gluon rel to colorless exchange.

Diffractive PDFs & Factorisation

- Diffraction is studied in terms of diffractive PDFs.
- > To extract these PDFs 2 Factorisation steps are applied.

$$\sigma^{D} = \sum f_{IP/p}(\boldsymbol{x}_{IP}, t) \cdot \boldsymbol{p}_{i, IP}(\boldsymbol{z}, \boldsymbol{Q}^{2}) \circ \sigma^{\boldsymbol{y}, i} + \dots$$

 $\sigma^{\gamma,i}$: partonic cross section

 $p_{i,IP}(z,Q^2)$: diffractive parton density

f_{IP/p}(X_{IP},t): pomeron flux factor

Results from inclusive Diffraction

Reduced Cross Section from incl. Diffractive Data (ICHEP04 / 06-175)

Get diffractive PDFs from a NLO (LO)
 DGLAP QCD Fit to inclusive data from
 6.5 GeV² to 120 GeV² (e.g.ICHEP02 / 980).

Extrapolation of the Fit

- ▹ to lower Q²
- ▹ to higher Q²

gives a reasonably good description of inclusive data (from ~3.5 GeV² -1600 GeV²)!

Diffractive PDFs from incl. Measurements

- Gluon Contribution dominates (carrying ~75% of the IP momentum).
- For gluon PDFs uncertainties increase towards higher z (EPS03 / 5-089).

Exclusive Final States in Diffraction

from scaling violations

Direct access to gluon density

> Test of universality of PDFs (= QCD Factorisation)

> Test of DGLAP evolution

Diffractive D* Production in DIS

Event Selection for Diffractive D*'s in DIS

Kinematic Range:

- > $0.05 < y_e < 0.7$ > $2 \text{ GeV}^2 < Q^2 < 100 \text{ GeV}^2$
- > p_T(D*) < 2 GeV
 > |η(D*)| < 1.5

Diffractive Selection:

≻ X_{Pom} < 0.04
 ≻ M_Y < 1.6 GeV
 Itl < 1 GoV²

▶ |t| < 1 GeV²

Visible Cross Section:

 σ_{vis} = 333 +/- 42(stat) +/- 62(sys) pb

Dominant Systematics:

- > Track Efficiency
- Model Uncertainties
- > Proton Dissociation

 $\sigma_{vis} = 241 + 66/-39 \text{ pb}$ (from NLO)

NLO Calculations for diffractive D*'s in DIS

HVQDIS Harris & Smith (hep-ph/9503484) with diffractive extension by Alvero et al (hep-ph/9806340) interfaced to diff PDFs of H1.

> QCD Parameters: $m_c = 1.5 \text{ GeV}; \Lambda_{QCD} = 0.20 \text{ GeV}; N_f = 4;$ $\mu_r = \mu_f = Q^2 + 4m_c^2$

> Peterson Fragmentation with ε =0.078.

> Uncertainties:

- > Variation of m_c =1.35...1.65 GeV and ϵ =0.035...0.1 (pale red outer band).

Cross Sections for diffractive D*'s in DIS

Good agreement within experimental & theoretical uncertainties.

Cross Sections for diffractive D*'s in DIS

Good agreement within experimental & theoretical uncertainties for all differential distributions.

A comparison with the ZEUS measurement

H1 Diffractive D^{*}

ZEUS points rescaled to kinematic range of H1 measurement (p_T > 1.5 GeV --> p_T > 2 GeV).

Good agreement of both measurements within stat errors!

Parenthesis: 2 Gluon Model of BJKLW

- Describes Pomeron as color singlet exchange of 2 gluons (cc-& ccg-component taken into account).
- Use unintegrated gluon densities from Fit to incl Structure Function F₂ (hepph/0309009).
- > Only valid for small X_{IP} (neglects quark exchanges).
- » p_T cut needed for ccg (pertubation theory applicable / tunes normalisation & shape / p_T>1.5 GeV).

Differential Cross Sections for x_{IP} < 0.01

In its range of validity $(x_{IP}<0.01)$ & with p_T cut at 1.5 GeV the two gluon approach is able to describe the data.

Diffractive Dijet Production in DIS

Kinematic Range:

> 165 GeV < W_{γp} < 242 GeV
 > 4 GeV² < Q² < 80 GeV² (DIS)

Dijet Selection:

- > inclusive k_T Algorithm in γp cms
- » Distance Paramerter 1
- ▹ E_T*Jet1 > 5 GeV
- ▹ E_T*Jet2 > 4 GeV
- Jet axes of 2 leading jets well within Calo acceptance (-1<η_{Jet, lab}<2)

Diffractive Selection:

- ≻ X_{Pom} < 0.03
- > $M_Y < 1.6 \text{ GeV}, |t| < 1 \text{ GeV}^2$

NLO Calculations for diffractive Dijets in DIS

Diffractive Extension of DISENT Catani & Seymour (Nucl Phys **B485** (1997) 29 / **B510** (1997) 503) interfaced to diff PDFs of H1.

> QCD Parameters: $\Lambda_{QCD} = 0.20 \text{ GeV}; N_f = 4;$ $\mu_r = E_T^{*Jet1}; \mu_f = 6.2 \text{ GeV} (\sim <E_T^{*Jet1} >)$

- Corrected for hadronisation with the Monte Carlo Generator RAPGAP (LO Monte Carlo Generator with parton showers).
- > Uncertainties:

 - NOT included: Variation of µf (by ½ and 2: ~10%) and uncertainty of hadronisation effects.

Cross Sections for diffractive Dijets in DIS

BAPGAP DISENT NLO*(1+ δ_{had})

Good description within experimental and theoretical uncertainties.

Uncertainties of PDFs not
included in theoretical error band.

Cross Sections for diffractive Dijets in DIS

H1 2002 fit (prel.) DISENT NLO*(1+δ_{had}) DISENT NLO ····· DISENT LO

Good agreement within experimental & theoretical uncertainties for all differential distributions.

Conclusion

NLO calculations with PDFs from inclusive Diffraction.

provide

(2 GeV² < Q² < 100 GeV²). Good description of diffrative Dijet Production in DIS (4 GeV² < Q² < 80 GeV²).

Good description of

diffrative D* Production in

DIS

Test of QCD Factorisation

(Within experimental and theoretical uncertainties) Hard Scattering Factorisation is <u>successfully tested</u> in DIS!

Single Diffractive Dijets at the Tevatron

- Rate overestimated by a factor of ~7.
- » Breakdown of Factorisation!
- Secondary interactions due to the hadronic system of the underlying event.

LO comparison to diffractive PDFs from HERA

Diffractive Dijets in Photoproduction

NLO Calculations for diffractive Dijets in γ **p**

(Nucl Phys B467 (1996) 399 / B507 (1997) 295) with interfaced to diff PDFs of H1. Diffractive extension of program by Frixione et al

> > QCD Parameters: $\Lambda_{QCD} = 0.20 \text{ GeV}$; N_f = 4; $\mu_r = \mu_f = E_T^{*Jet1}$; $\mu_f = 6.2 \text{ GeV} (\langle E_T^{*Jet1} \rangle)$

> Corrected for hadronisation with the Monte Carlo Generator RAPGAP.

> Uncertainties:

- > Simultaneous Variation of of μ_r and μ_f by ½ and 2 (red band).
- NOT included: uncertainty of hadronisation effects (~10%).

Cross Sections for diffractive Dijets in γ **p**

H1 Preliminary
 correl. uncert.

H1 2002 fit (prel.) ■ FR NLO*(1+δ_{had}) … RAPGAP

- > NLO prediction overestimates cross sections by a factor of ~2 (compare to ~7 at the Tevatron).
- Direct and resolved component are equally suppressed.
- Suppression also seen in all other distributions.
- LO Monte Carlo Generator RAPGAP with Parton Showers gives good description.

Suppression only of Resolved NOT enough

H1 Preliminary
 correl. uncert.

H1 2002 fit (prel.) FR NLO*(1+ δ_{had}), (x_y^{jets}<0.9)×0.34 As suggested by Kaidalov et al (Phys Lett B567 (2003) 61): only resolved contribution should be suppressed by ~1/3.

BUT

A suppression of only the resolved contribution **can not** describe the data.

Cross Sections with NLO x 0.5

Cross Sections with NLO x 0.5

Ratio: Data over NLO Prediction

No suppression observed in DIS.

 Overall suppression factor of 0.5 needed in γp (for both direct & resolved).

No significant Dependence of γp cms Energy within the covered W range.

Final Conclusion

New results presented on exclusive Final states in Diffraction.

NLO overestimates measured Cross Section for Dijet Production by a factor of ~2.

yp

Direct and Resolved are equally suppressed.