H1 studies of parton cascades using jets

K. Sedlák

(Institute of Physics, AS CR, Prague)

Representing H1 Collaboration

- H1 analysis of forward π^0 [hep-ex/0404009]
- H1 analysis of forward Jets (Abstract 5-0172 at ICHEP04)
- H1 analysis of dijet production [hep-ex/0401010]
- Conclusions

JET PRODUCTION IN DIFFERENT EVOLUTION SCHEMES

DGLAP: strong ordering of parton k_T

CCFM: angular ordering of parton emissions ("unintegrated" PDF)

BFKL: strong ordering in x_i ("unintegrated" PDF)

ANALYSES OF FORWARD JET AND π^0 production

- F_2 : very inclusive, well described by DGLAP
- Jet / π^0 in the forward region: information on full evolution ladder
- To suppress DGLAP: $k_{T,jet/\pi^0}^2 \sim Q^2$
- To enhance BFKL:

$$x_{jet/\pi^0} \equiv E_{jet/\pi^0}/E_P \gg x_B$$

FORWARD JET AND FORWARD π^{0} MEASUREMENTS

forward π^0 measurements

- fragmentation effects more significant
- smaller rate
- identification possible in more forward region

forward jet measurements

- + better parton correlation
- + higher rates
- exp. difficult in very
 - forward (p) region
- ambiguities of jet algorithm

FORWARD JET AND FORWARD π^0 MEASUREMENTS

$$\begin{array}{|c|c|c|c|c|c|c|} \hline e + P \rightarrow e + \pi^0 + X & e + P \rightarrow e + \mathrm{jet} + X \\ \hline & \mathsf{Data \ sample} & \mathsf{21 \ pb^{-1}, 1996/97} & \mathsf{14 \ pb^{-1}, 1997} \\ \hline & \mathsf{Forward \ jet}/\pi^0 & \mathsf{5}^\circ < \theta_{\pi^0} < 25^\circ & \mathsf{7}^\circ < \theta_{\mathrm{jet}} < 20^\circ \\ \hline & \mathsf{Hard \ forward \ jet}/\pi^0 & p_{T,\pi^0} > 2.5(3.5) \ \mathrm{GeV} & p_{T,\mathrm{jet}} > 3.5 \ \mathrm{GeV} \\ \hline & \mathsf{Suppress \ DGLAP:} & 2 < Q^2 < \mathsf{70 \ GeV}^2 & \mathsf{5} < Q^2 < \mathsf{85 \ GeV}^2 \\ \hline & \mathsf{0.5} < p_{T,\mathrm{jet}}^2/Q^2 < \mathsf{5} \\ \hline & \mathsf{Target \ BFKL:} & x_{\pi^0} \equiv E_{\pi^0}/E_P > 0.01 & x_{jet} \equiv E_{jet}/E_P > 0.035 \\ \hline & \mathsf{Kinematic \ cuts:} & 0.1 < y < 0.6 & 0.1 < y < 0.7 \\ \hline & \mathsf{0.000 \ 01} < x_B & \mathsf{0.000 \ 1} < x_B < \mathsf{0.000 \ 1} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC} \\ \hline & \mathsf{ABC} & \mathsf{ABC} & \mathsf{ABC}$$

FORWARD $\pi^0 (p_{T,\pi}^* > 2.5 \text{GeV})$

DGLAP (DIR + RES) : resolved photon component improves the description ($\mu^2 = Q^2 + 4p_T^2$). CCFM (CASCADE) : below the data at low x and Q^2 . **CDM** : reasonable description of the data. Mod. LO BFKL (Kwiecińsky, Martin, Outhwaite hep-ph/9903439): reasonable description of the data, however sensitive to a particular parameter choice.

FORWARD $\pi^0 (p_{T,\pi}^* > 3.5 \text{GeV})$

NLO calculations :

describe the data well

$$\mu^2 = (Q^2 + p_{T,parton}^{*2})/2$$

BFKL-like diagrams important

CCFM (CASCADE) :

low at small x and Q^2 (would the inclusion of quarks in the evolution help ??)

mod. LO BFKL : too high at higher Q^2

FORWARD JET ANALYSIS

All models low in the lowest x_B bin. CASCADE high at higher x_B . DGLAP DIR+RES best.

FORWARD JET ANALYSIS

- Good description at high Q^2 , high $p_{T, jet}^2$ and (or) high x_B .
- Higher orders seem to be needed at low Q^2 , $p_{T,\,{
 m jet}}^2$ and x_B .

$$(r=p_{T,\,{
m jet}}^2/Q^2)$$

- RAPGAP DIR fails.
- RAPGAP DIR+RES best description.
- CDM good, but problems at high $p_{T,\,{
 m jet}}^2$.
- CASCADE Too low at small Q², too high at large Q².

2+FORWARD JET ANALYSIS

Two hard jets ($p_T > 6 \,\text{GeV}$) in addition to the forward jet.

 $\Delta \eta_1 < 1$: small x_g , i.e. room for many emissions in x (BFKL-like ladder).

 $\Delta \eta_1 > 1$: Shorter parton ladder (not that BFKL-like).

(No p_T^2/Q^2 cut.)

DIJET PRODUCTION

$$\begin{array}{l} {\rm 57\ pb^{-1},\ 1999\text{-}2000,\ }\sqrt{s}=318\ {\rm GeV}\\ 2< Q^2<80\ {\rm GeV^2;} \quad 0.1< y<0.85\\ E_{T1}^*>7\ {\rm GeV;} \quad E_{T2}^*>5\ {\rm GeV}\\ -2.5<\eta_{1,2}^*<0\\ \end{array}\\ \begin{array}{l} {\rm longitudinally\ invariant\ }k_t\ {\rm jet\ algorithm,\ }\gamma^*p\ {\rm CMS}\\ \end{array}\\ \begin{array}{l} {\rm More\ details:\ [hep-ex/0401010]} \end{array}$$

 $x_{\gamma}^{\text{jets}} = \frac{\sum\limits_{\text{jet 1,2}} (E_{\text{jet}}^* - p_{z,\text{jet}}^*)}{\sum\limits_{\text{hadrons}} (E^* - p_{z}^*)} = \text{fraction of the photon momentum taken}$

by a parton into the hard process

Dijet cross sections – comparison with NLO

- NLO DIR fails at low $Q^2,\,E_T^*$ and $x_\gamma^{\rm jets}.$
- NLO DIR+RES (JETVIP) better description, problems with technical parameter y_c.

(Low $x_{\gamma}^{\rm jets}$ corresponds to jets in the forward region.)

Dijet cross section – comparison with LO MC

- HERWIG TOT describes well the region where NLO calculations fail, but problems at high $x_{\gamma}^{\rm jets}$.
- HERWIG RES γ_L^* helps to improve the description of the data.

CASCADE, a MC model based on CCFM eq.

- CASCADE fails at low Q^2 and low $x_{\gamma}^{\rm jets}$.
- CASCADE at low E_T^* underestimates the dijet cross sections at low Q^2 and overestimates them at high Q^2 .

(Low $x_{\gamma}^{\rm jets}$ corresponds to jets in the forward region.)

The three recent H1 analyses show that:

- The largest discrepancies between the theory and data in the region of low Q^2 , low p_T and low x (either x_B or x_{γ}^{jets}).
- The data usually best described by the DGLAP-like LO MC programs including the resolved photon contributions.
- NLO predictions under the data at low $\mathbf{Q^2}$, $\mathbf{E^*_T}$ and x_B (x_γ^{jets}).
- CASCADE underestimates the cross sections at low Q^2 .
- CDM slightly worse than full DGLAP MC predictions but slightly better than CCFM MC.

NO EVIDENCE FOR CCFM OR BFKL SUPERIORITY WITH RESPECT TO DGLAP.

Dijet cross sections – comparison with NLO

