Workshop on low x physics Prague, September 17, 2004

New results on heavy flavour physics at HERA

Detlef Bartsch University of Bonn

- motivation
- charm
- beauty
- summary

HERA and kinematics

 $\sqrt{s} = 320(300) \, \text{GeV}$

- Q^2 :4-momentum transfer squared
- x :Bjorken x
- y :Inelasticity
- \boldsymbol{W} :Mass of the hadronic system

heavy flavour production at HERA

pointlike component

 $e^{\pm \prime}$

• Two kinematic regimes: Deep Inelastic Scattering (DIS): $Q^2 > 1 \text{ GeV}^2$ Photoproduction (PHP): $Q^2 \approx 0 \text{ GeV}^2$ Photoproduction (PHP):

Important other source in PHP: resolved component

Detlef Bartsch

New results on heavy flavours at HERA

QCD calculations and MC

• Fixed order NLO calculations

(massive scheme)

heavy quark produced dynamically

 $p_t \sim m_q$

- PhP: FMNR DIS: HVQDIS
- resummed NLL calculations

 (massless scheme)
 heavy quark is active flavour of proton
 or photon

 $p_t >> m_q$

- PhP: Cacciari et al., Kniel et al.
- Matched scheme FONLL

(fixed order and NLL p_t resummation)

• Cacciari et al.

Fragmentation: non-pertubative models

- MC generators
 - AROMA: direct only,
 LO matrix elements +
 LL DGLAP evolution
 - PYTHIA, RAPGAP, HERWIG: direct + resolved, LO DGLAP
 - CASCADE: CCFM evolution
 k_t dependent gluon density

D^* tagging

Charm is tagged at HERA most efficiently with the reconstruction of a D^* meson in the decay channel $D^{*\pm} \to {}^{\circ}\overline{D}^{\circ}0\pi_s^{\pm} \to K^{\mp}\pi^{\pm}\pi_s^{\pm}$ Mass difference: $\Delta M = M(K\pi\pi) - M(K\pi)$

high signal/background ratio due to small phasespace for the D^* decay (small combinatorical background)

photoproduction of D^*

- data compared with 'massive' NLO and 'massless' NLO
- \bullet shape of $d\sigma/dW$ described well by both
- shape of $d\sigma/d\eta(D^*)$ less well described
- large uncertainties in theory

 $Q^2 < 0.01 \,{
m GeV}^2, \,\, 171 < W < 256 \,{
m GeV}$ $p_t(D^*) > 2.5 \,{
m GeV}, \,\, |\eta(D^*)| < 1.5$

PHP of D^* , inclusive jet cross sections

- additional scale added E_T^{jet}
- 'massive' NLO calculation below data at high E_T^{jet}
- 'massless' NLO calculation in reasonable agreement with data
- theories have large uncertainties

 $egin{aligned} Q^2 < 1 \ {
m GeV}^2, \ 130 < W < 280 \ {
m GeV} \ p_t(D^*) > 3 \ {
m GeV}, \ |\eta(D^*)| < 1.5 \ E_T^{jet} > 6 \ {
m GeV}, \ -1.5 < \eta^{jet} < 2.4 \end{aligned}$

D^* production in DIS

- NLO QCD in reasonable agreement with measurement
- sensitivity to choice of PDF found
- cross sections have potential to be used for PDF's

$$\begin{split} & 1.5 < Q^2 < 1000 \, \text{GeV}^2, \ \ 0.02 < y < 0.7, \\ & 1.5 < p_t(D^*) < 15 \, \text{GeV}, \ \ |\eta(D^*)| < 1.5 \end{split}$$

D^* production in DIS at low Q^2

 $0.05 < Q^2 < 0.7 \, {
m GeV}^2, \ 0.02 < y < 0.85, \ 1.5 < p_t(D^*) < 9 \, {
m GeV}, \ |\eta(D^*)| < 1.5$

charm tagging

secondary vertex identification $\frac{1}{2}$ with H1 central silicon tracker (CST)

background reduced with cut on decay length significance

 $D^+ \rightarrow K^- \pi^+ \pi^+$

no CST life time tag

1.9

1.8

a)

• H1

– Fit

2

 $m(K\pi\pi)$ [GeV]

candidates / 20 MeV

π

15000

10000

5000

0

1.7

D^+ mesons

- large scale factor for beauty contribution
- visible cross section described well by AROMA

shapes described
reasonably

 $2 < Q^2 < 100 \,{
m GeV}^2$ 0.05 < y < 0.7 $p_t(D) > 2.5 \,{
m GeV}$ $|\eta(D)| < 1.5$

New results on heavy flavours at HERA

fragmentation of charm quarks

visible cross section / fragmentation factor

• similar shapes for different D mesons

universal fragmentation ansatz reasonable (independent of the hard scattering process and of the charm production scale)

1.5

10

 $Q^2 [GeV^2]$

fragmentation ratios

• $R_{u/d} = c \overline{u} / c \overline{d}$ small u, d quark mass $\rightarrow R_{u/d} \sim 1$

• $\gamma_s = 2c\bar{s}/(c\bar{u} + c\bar{d})$ strangeness suppression factor

• $P_v = V/(V + PS)$ from paive spin cou

from naive spin counting expected to be 3/4,

 \rightarrow spin counting does not work!

precision comparable with DELPHI

D meson tagging with HERA II

beauty tagging: p_t^{rel}

Why beauty?

 $\sigma_{b\bar{b}}/\sigma_{c\bar{c}}\sim 0.05 \Rightarrow$ hard to identify beauty, but $m_b>m_c\Rightarrow$ pQCD should become more reliable

How to identify $b \rightarrow l \overline{\nu} X$?

2 jet events (BGF) with tagged μ in one of the jets

Large b mass causes high p_t of μ relative to the jet (p_t^{rel}) (H1 and ZEUS)

beauty tagging: lifetime

Tracks

2 jet events (BGF)

- Long lifetime of b causes large impact parameter δ of one (μ) track (H1, ZEUS with HERA II)
 - Can be made with any track in the jet

DCA [cm]

beauty in PHP

- General agreement between H1 and ZEUS
- NLO undershoots data at low p_t^μ
- Still agreement within errors with massive NLO QCD (FMNR)

beauty in PHP: resolved photons

beauty in DIS

ZEUS

- Data higher than NLO, esp. at small Q^2 and x
- theoretical prediction up to $\sim 2.5\sigma$ below data

overview $j(j)\mu$ beauty cross sections

Data/Theory as a function of Q^2

Data in agreement with (massive) NLO predictions,

slightly higher in DIS for low Q^2

beauty in PHP with inclusive lifetime tag

- MC falls below data by a factor of about 2
- \bullet shapes of $p_t^{jet_1}$ described well
- main difference in η^{jet_1} for forward jets and at small x_γ^{obs}

0.2

0.4

0.6

 \bm{x}_{γ}^{obs}

0.8

charm contribution to F_2

- F_2 : proton structure function
- extraction of $F_2^{c\bar{c}}$
- ratio $F_2^{c\bar{c}}/F_2$ rises from 10% to 30% with increasing Q^2 and decreasing x
- at low Q^2 errors comparable with those from PDF fit

measurement of $F_2^{b\bar{b}}$ and $F_2^{c\bar{c}}$

- extract fully inclusive cross sections (structure functions) in x and Q²
- model extrapolation small (10%)
- data consistent with NLO massless QCD and with ZEUS (from D*)

$$Q^2 > 150 \, \text{GeV}^2, \ 0.1 < y < 0.7$$

summary

charm

- charm cross sections generally well described by pQCD
- many new measurements: low Q^2 , jets, ... in this regime large theoretical uncertainties
- evidence for separation ansatz between hard process and fragmentation
- evidence for universal charm fragmentation in e^+e^- and ep

beauty

- new differential b cross section measurements in PHP and DIS
- measurements in agreement with massive NLO QCD predictions
- first determination of $F_2^{b\bar{b}}$ at $Q^2 > 150 \text{ GeV}^2$

improved analysis methods and higher statistics with HERA II data

backup slides

J/ψ production in PHP

 $J/\psi \rightarrow \mu \overline{\mu}$ in the kinematic range $Q^2 < 1 \text{ GeV}^2$, 40 GeV $< W_{\gamma p} < 150 \text{ GeV}$, $|t| < 1.2 \text{ GeV}^2$

Agreement with previous measurements and MRT calculations

exclusive J/ψ -production in DIS

comparison with QCD models

- models describe the data
- large uncertainty in normalization

comparison for different PDF's

- CTEQ6M, ZEUS-S describe data
- MRST02 has wrong shape in W

exclusive J/ψ -production in DIS

Diffractive D^* production in DIS

Measurements are in agreement with previous measurements of H1 and ZEUS

Agreement within error bars with theoretical prediction (HVQDIS with NLO diffractive parton distributions)

 $\begin{array}{l} 2 < Q^2 < 100 \ {\rm GeV}^2, \ 0.05 < y < 0.7 \\ x_{I\!P} < 0.04, \ M_Y < 1.6 \ {\rm GeV}, \ |t| < 1 \ {\rm GeV}^2 \\ p_{t,D^*} > 2 \ {\rm GeV}, \ |\eta_{D^*}| < 1.5 \end{array}$

Diffractive D^* production in DIS, cont.

Prediction of perturbative 2-gluon approach with un-integrated gluon density also in good agreement with measurement.

Detlef Bartsch

New results on heavy flavours at HERA

D^* production with leading neutron

D^* production with leading neutron, x_L -dependence

Only one pion exchange model (OPE) describes the data.