Jets in Deep Inelastic Scattering at HERA

and Measurement of

Roman Pöschl DESY Hamburg

Lake Louise Winter Institute February 2004

Deep Inelastic Scattering at HERA

Jet Cross Sections in DIS

Inclusive Jet Cross Sections

Theoretical and experimental advantages

Extraction of $_{s}$ possible at large values of Q² and E_{τ}

Determination of

Parameterize jet cross section as power series of ___(M_)

$$d\sigma \sim A \cdot s + B \cdot \frac{2}{s}$$

Based on NLO-QCD predictions which employing different values of $_{_{\rm g}}({\rm M_{_Z}})$

 Extract from measured cross section 'true' value of

Result from inclusive cross section do/dQ²
Q² > 500 GeV²

$\underline{\alpha}$ from inclusive Jet and Dijet Cross Sections

Extraction of as at different energy scales μ . Running of $\alpha_{_{\rm S}}$ with energy

(Basic QCD prediction)

Phys. Lett. B 570 (2003) 7 Phys. Lett. B 507 (2001) 70 Phys. Lett. B 547 (2002) 164 Eur. Phys. J. C 19 (2001) 289

Results show clearly the running of $\alpha_{\!_{s}}$ over wide range of μ Consistency with global fits

Determination of the Gluon Density with Jets

Eur. Phys. J. C 19 (2001) 289

Simultaneous fit of α_s and the gluon density xG(x)

Basic idea:

Use three different cross sections to determine unknowns α_{s} , G(x), q(x)

$$\sigma_{DIS} \sim q(x)$$

$$\sigma_{jet} \sim \alpha_s \quad (c_G G(x) + c_q q(x))$$

$$\sigma_{2jet} \sim \alpha_s \quad (c'_G G(x) + c'_q q(x))$$

Kinematic range

- DIS x-section: 150 < Q² < 1000 GeV²
- Jet x-section: 150 < Q² < 5000 GeV²

Fit:

- fixed factorization scale μ
- put experimental, scale and hadronization uncertainties into systematics

Large anti-correlation between G(x) and α_{s} Result consistent with global fits

Improvement by higher statistic @ large ET

Eur. Phys. J. C 19 (2001) 289

Dijet and three-jet cross sections well described by NLO QCD calculations (up to α^3 for three jets)

Potential for extraction of α_s !?

Three Jet Cross Sections in DIS

 \Rightarrow High sensitivity to α_{s}

Contributed Paper to EPS '03

$\alpha_{\mbox{\tiny s}}$ measurement employing three jet cross sections

Reduced sensitivity to gluon density by ratio

Sizeable sensitivity on gluon density

Large sensitivity to small variations of $\boldsymbol{\alpha}_{_{\!\boldsymbol{s}}}$

Jet Substructure

A jet can be decomposed into subjets

Subjet-Multiplicity sensitive to α_{a}

Subjet Multiplicity and Determination of α_{a}

Measurement in Lab. Frame

Number of subjets decreases as E_T of jet increases

- NLO QCD calculations describe data
- Predictions based on different $\alpha_{\rm s}$ 'oscillate' around data
- \rightarrow Determination of α_{i}

Conclusions

- Multijet production in DIS at HERA allow for stringent test of QCD

 Precise determination of by various jet observables

Consistent results

 Significant impact on world. average of

The Breit Frame

In ep lab-frame outgoing hadrons have to balance E₂ of scattered e

Choose frame where transverse energy is solely produced by interesting hard scatter Frame where proton and photon collide head on

