

Searches and Signals of new physics at HERA

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, Aosta Valley, Italy, February 29-March6, 2004

S.Dusini, INFN Padova on behalf of H1 and ZEUS collaborations

Beyond SM searches at HERA I

Searches for new Resonances or

Contact-Interactions

- Leptoquark
- Lepton Flavour Violation
- Contact Interaction
- Extra-dimension
- Quark Radius
- Excited Fermion
- + SUSY in MSSM $\rm R_{\rm p}$ conserving model
- + SUSY in $R_{_{\rm P}}$ violating model

Exclusive final states

- Isolated $e,\,\mu,\,\tau$ and missing \textbf{p}_{τ}
- Single-top limits
- Multi electron, multi muon events
- Doubly-charged Higgs limits
- General search
- Magnetic Monopoles
 Non standard barions
- K^op resonances

In red the topics covered in this talk

HERA kinematics and luminosity

• $Q^2 = -q^2$ four momentum transfer

• $x = Q^2/2pq$ guark momentum fraction of the proton

- y energy transferred from lepton to γ
- $s = Q^2/xy$ (ep CM energy)²

• Data sample:

- e⁺p @ √s=300 GeV : 40 pb⁻¹
- e⁺p @ √s=318 GeV : 66 pb⁻¹
- e⁻p @ √s=318 GeV : 16 pb⁻¹
- Two experiments: ZEUS, H1

Contact Interaction: Introduction

 $\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \left(1 - \frac{1}{6}R^2Q^2\right)^2$

 $R_q < 0.85 \times 10^{-16} \text{ cm} (ZEUS)$ $R_q < 1.0 \times 10^{-16} \text{ cm} (H1)$

CI: Compositeness

 $\eta_{ij}^q = \pm \epsilon_{ij} \frac{4\pi}{\Lambda^2}$

Curves are 95% C.L. exclusion limits for positive $(+\Lambda)$ or negative $(-\Lambda)$ interference term

CI: Large extra dimensions

Arkani-Hamed et al. [Phys.Lett. B429, 263 (1998)]:

- SM particles propagate in 4-D, gravitons in (4+n)-D dơ/dQ² / dơSM/dQ²
- $M_{p}^{2} = R^{n} M_{s}^{2+n}$
 - M_s scale of the 4+n theory (~1 TeV)
 - R = size of n compact extra dimensions
- Virtual Kaluza-Klein "graviton" exchange interferes with γ, Z
- Effective coupling $\eta_e = \lambda / M_s^4$

General Search (H1)

- Select events with at least 2 isolated object with P_{T} > 20 GeV and 10° < θ < 140°
- Object are: electron, muon, jet and neutrino or non interacting particle
- p statistical estimator to look for large deviation from SM in M_{all} and $\sum p_{T}$

Isolated leptons and missing p_{τ}

Events Topology:

- High p_{τ} lepton ($p_{\tau}^{\text{track}} > 5$, 10 GeV)
- Isolated track (D_{iet}>1, D_{track}>0.5)
- Missing P_T (> 20, 25 GeV)
- Jet

Dominant SM process is W production: $\sigma(ep \rightarrow e W^{\pm}X) \sim 1 pb$

Isolated leptons and missing p_{τ} (2)								
	Electrons			Muons				
H1 e⁺p 105 pb⁻¹	P_{T}^{X} cut	Obs.	SM	W-only	Obs.	SM	W-only	
	P _T [×] < 12 GeV	5	6.40 ± 0.79	4.45 ± 0.70	-	-	-	
	12 < P _T < 25 GeV	1	1.96 ± 0.27	1.45 ± 0.24	2	1.11 ± 0.19	0.94 ± 0.18	
	25 < P _T [×] < 40 GeV	1	0.95 ± 0.14	0.82 ± 0.13	3	0.89 ± 0.14	0.77 ± 0.14	
	P _T [×] > 40 GeV	3	0.54 ± 0.11	0.45 ± 0.11	3	0.55 ± 0.12	051 ± 0.12	
H1 e ⁻ p 16 pb ⁻¹		1	1.69 ± 0.22	-	0	0.37 ± 0.06	-	
ZEUS ep 130 pb ⁻¹ Total		24	20.6 +1.7/-1.6	17%	12	11.9 +0.6/-0.7	16%	
	P _T [×] > 25 GeV	2	2.9 +0.59/-0.32	45%	5	2.75 ± 0.21	50%	
	P _T [×] > 40 GeV	0	0.94 +0.11/-0.1	61%	0	0.95 +0.14/-0.	61%	

- Is the excess in e⁺p collision at high p_T^{\times} new physics?
- Single top production via anomalous magnetic and vector FCNC top coupling k_{tuy} , v_{tuZ}
- SM cross-section ~ 1fb⁻¹

S.Dusini, Searches and signals of new physics at HERA

 $\gamma/{
m Z}^0$

 $\kappa_{tu\gamma}/v_{tuZ}$

u

 $\bar{\mathrm{q}}/l$

Single top: semi-leptonic decays

S.Dusini, Searches and signals of new physics at HERA

10

Single top: hadronic decays

Both experiments agree with SM in the hadronic channel

Single top search: Results

- H1 observe excess in leptonic channel (e+ μ), agreement with SM in hadronic channel
 - Is this single top via FCNC?

S.Dusini, Searches and signals of new physics at HERA

 $\kappa_{tu\gamma}$

Isolated τ events

- Extend search for isolated high-p_T leptons and missing p_T to $\tau\text{-lepton}$ decaying hadronicaly
- τ selected using discriminant D base on jet-shape variable: pencillike jet, only 1 track in jet
 ZEUS

Isolated τ events

ZEUS

Search for multi lepton events

Very clean process which can be sensitive to new physics at high di (tri)-lepton invariant mass

Selection:

- 2 isolated electrons (20° < θ_e < 150° H1, 17° < θ_e < 164° ZEUS)
- \cdot p_{\tau} > 5 GeV and 10 GeV
- 3^{rd} electron with $5^{\circ} < \theta_{e} < 175^{\circ}$ and $E_{e} > 5(rear)$, 10(forward) GeV

Multi electron events

$\begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $		есселяр) =500x L _{DATA} 2e 50 100 150 M ₁₂ (GeV)
$\begin{array}{c} \begin{array}{c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	150 150 L 150 L 150 L 100	коспаре) =500х <i>L</i> _{DATA} 3e • • • • • • • • • • • • • • • • • • •
Sample	Data	SM
2e Total	108	117±8.6
3e Total	17	20.3±2.1
2e M ₁₂ >100 GeV	3	0.30±0.04
3e M ₁₂ >100 GeV	3	0.23±0.04
A 1 1 1		

H1

6 outstanding events M_{12} > 100 GeV

Sample	Data	SM	
2e Total	191	213.9±3.9	
3e Total	26	34.7±0.5	
2e M ₁₂ >100 GeV	2	0.77±0.08	
3e M ₁₂ >100 GeV	0	0.37±0.04	

Good agreement with SM

ZEUS

H1

Di-muon events

- Good agreement with SM
- 1 $\mu\mu$ event with M>100 GeV

Search for K⁰_sp resonance

- Several fixed target experiments observe a narrow baryon S=+1 resonance ~1530 MeV, (LEPS, DIANA, CLAS, SAPHIR, HERMES, SVD) $\overset{uudds}{\frown} \Theta^+(1530) \rightarrow K^0p, K^+n$
- Observation compatible with Θ⁺ pentaquark at 1530 MeV and width <15 MeV, predicted in the soliton model by D.Diakonov, V.Petrov and M.Polyakov
- Search of pentaquark reconstructing K_s^o-(anti)proton invariant mass

ddssu

• The search is performed in the central-tracking region, where hadron production is dominated by fragmentation

N(1710)

Σ(1890)

uussd

Ξ**(2070)**

Search for K_{s}^{0} presonance: K_{s}^{0} selection

Data Set

- 121 pb⁻¹, 1996-2000 e[±]p data @ 300-319 GeV
- DIS events Q² > 1 GeV

 K^{0}_{s} selection: $K^{0} \rightarrow \pi^{+}\pi^{-}$

- 0.002 • CTD tracks, p_τ>150 MeV, |η|<1.75
- K^o from secondary vertex
- Photon conversion removed: M(e⁺e⁻) < 50 MeV
- Λ 's removed M(π p) < 1121 MeV
- p_τ(K⁰)>300 MeV; |η(K⁰)|<1.5

Double Gaussian + linear background fit

```
869690 ± 1016 K<sup>o</sup> candidate
     background ~ 6%
```


Peak at 498.12 ± 0.01 (stat) MeV

Search for K⁰_sp resonance: p selection

- Most of the signal p~0.8-2 GeV
- p<1.3 GeV inside dE/dx band
- E(proton) > E(K^o)
- Assign pion mass to proton candidate, reconstruct K⁰π, reject pions from K*: 800 < M(K⁰π) <980 MeV

K⁰_sp(anti-p) invariant mass

Combined sample: 372 ± 75 candidates Peak 1527 ± 2(stat) MeV, width 10 ± 2(stat) MeV (Mass resolution from MC simulation: 4±1 MeV)

Outlook

- HERA II delivered ~ 30 pb^{-1} of luminosity in 2003-2004
- Instantaneous luminosity $(3 \cdot 10^{31} \text{ cm}^{-2} \text{s}^{-1})$ already higher then HERA I
- Longitudinal electron polarization > 30%

22