Measuring diffractive processes at HERA

Frank-Peter Schilling

[DESY]

Contents:

- Rapidity gap / Mx methods
- HERA-I: FPS detectors and results
- HERA-II VFPS status and prospects

Diffraction at the LHC Rio de Janeiro, April 2004

The Rapidity Gap Method (H1,ZEUS)

Select (offline!) diffractive events by demanding no activity above noise in fwd part of detector η_{max} : rapidity of most fwd. cluster with $E > E_{min}$

The Rapidity Gap Method (cont.)

Complement η_{max} with detectors sensitive to very fwd. particle production

Forward Tagging System FTS

- Scintillator pairs surrounding \boldsymbol{p} beam pipe
- Veto on hits
- Sensitive to $6.0 < \eta < 7.5$
- Problem: aging

- Veto on hit pairs in pre-toroid layers

Forward Muon Spectrometer FMD

- Sensitive to $\eta < 3.7$
- indirectly even to bigger η due to secondary scattering)

The Rapidity Gap Method (cont.)

Diffractive Selection: 10^{-3} - (a)

 10^{3}

- typically $\eta_{\rm max} < 3.2$ – additional $x_{I\!\!P} < 0.05$ cut to reduce non-diffr. and reggeon contributions - good description by sum of diffr.+non-diffr. MC

– Efficiency for dissociation (a,b) and elastic (c)

- Profit from combination of several detectors

Final cross sections corrected to well-defined region $M_Y < 1.6 \text{ GeV}, |t| < 1.0 \text{ GeV}^2$

Dominant systematic uncertainty due to this correction (modelling of Y system)

The ZEUS Forward Plug Calorimeter (1998-2000)

- Lead/scintillating fibre sandwich calorimeter
- Installed in 20x20 cm diameter beam hole of forward Calorimeter
- 3.2 cm radius hole for beampipe
- Length 110 cm, 5.4 λ (nucl. absorption lengths), EM+HAD sections
- Increase acceptance from $\eta = 4$ to 5

The ZEUS Forward Plug Calorimeter (cont.)

- hadronic(elmg.) energy resolution: $\sim 65(40)\%/\sqrt{E/GeV}$
- Absolute scale uncertainty: em: 4% had: 3%
- Increased acceptance at high M_X and low W

- Rejection of p dissociation for $M_Y > 2.3 \text{ GeV}$
- Device removed for lumi upgrade (s.c. quad installation)

The M_X Method (ZEUS)

Properties of M_X distribution:

- Exponentially falling for decreasing M_X for nondiffractive events (random gap probability)
- flat vs $\ln M_X^2$ for diffractive events

$$\frac{dN}{d\ln M_X^2} = D + ce^{b\ln M_X^2}$$

Determine *D*, *c*, *b* from fit in each measured bin

Contamination from dissociation: $ep \rightarrow eXY$

Benefits from FPC calorimeter (larger M_X)

The H1 Forward Proton Spectrometer FPS

- Roman Pot technology, scintillating fiber detectors
- readout by position sensitive photo-multipliers (PSPM)

FPS: Vertical and Horizontal Stations

Vertical: 2 stations at 81 and 90m

- 2 fiber detectors per pot (u/v)
- 5 fiber layers per coordinate (48/layer)
- 4 fibers / PSPM pixel (multiplexing)
- 4 64-pixel fine mesh Hamamatsu PSPM's per Pot

Horizontal: 2 stations at 64 and 80m

- 2 fiber detectors per pot (u/v)
- 5 fiber layers per coordinate (24/layer)
- no multiplexing
- 4 124-pixel micro channel plate PSPM's per Pot

FPS: Acceptance

- Vertical FPS acceptance: $0.1 < x_{I\!\!P} < 0.5, p_T < 0.4 \, {\rm GeV}$
- Horizontal FPS acceptance: $x_{I\!\!P} < 0.15, 0.06 < |t| < 0.6 \text{ GeV}^2$

FPS: Fiber layer efficiency + upgrade

- Vertical FPS: Fiber layer eff. 60 70% Track eff in 2 pots ~ 50% reduced to 30% after 5 years
- Horizontal FPS: Fiber layer eff. 50% Track eff in 2 pots ~ 30% reduced to 20% after 2 years
- Radiation degradation of fibers; reduced PSPM efficiencies

HERA-II upgrade:

- New radiation resistent scintillating fibers
- 0.48 mm fibers: better resolution
- New PSPM's

Frank-Peter Schilling

FPS: Calibration

Calibration of horizontal stations:

- Use elastic ρ meson photoproduction $\gamma p \rightarrow \rho p'$
- Momentum balance between ρ and leading proton

FPS: Resolution

- Resolution dominated by beam optics, fiber detector resolution and Pot position calibration
- $x_{I\!\!P}$ resolution better than reconstruction from central detector for $x_{I\!\!P} > 0.02$
- 4 |t| bins for $0.08 < |t| < 0.5 \,\mathrm{GeV}^2$

The H1 Very Forward Proton Spectrometer VFPS

- Tag and measure scattered proton at HERA II with large acceptance at low x_{IP} and down to lowest |t|
- Precision studies of $ep \rightarrow epX$

HERA II beam optics simulation:

- Best location is at 220m in horizontal plane (use HERA bend)
- Down to t = 0 for $x_{I\!P} \sim 0.01$

BUT: Cold magnet section!

VFPS: Detector Design

Detectors:

- Same design as vertical FPS
- 2 detectors at 218m and 222m
- 2 planes (u,v) per detector
- 5 fiber layers / plane
- 4 trigger tiles / plane
- Fibers for spatial reconstruction \rightarrow Resolution 100μ

Optical Connection:

- Tiles: PM; Fibers: PSPM
- 1 light guide / plane of 5 fibers
- 4 light guides / PSPM pixel (multiplexing, decode with trigger tiles)

Trigger:

- Provde L1 trigger (within $2.2\mu s$) using air-core cable
- Cruical for getting all VFPS events on tape

VFPS: Cold Beampipe Bypass

Horizontal bypass for helium and s.c. lines \Rightarrow Access to proton beampipe for 10m

before installation

after installation

Installed successfully during summer 2003 shutdown

Diffraction at the LHC, Rio, April 2004

 $\Rightarrow 100\%$ acceptance for $|t| < 0.2 \text{ GeV}^2$ and $0.01 < x_{I\!\!P} < 0.02!$

VFPS: Reconstruction

 $(x, x', y, y') \rightarrow \text{beam optics} \rightarrow (t, x_{I\!\!P}, \phi)$

- Beam optics, tilt, smearing
- non-linear effects in $x_{I\!\!P}$: HERA sextupole magnets
- fiber detector resolution ($\sim 100 \mu$), pot position calibration

VFPS: Calibration

Pot position relative to p beam:

- Forward kinematic peak in θ_x, θ_y
 x_{IP} measurement from central detector
 (~ 200 events for stable calibration)
- Cross-calibration with elastic ρ meson photoproduction events (as for hor. FPS)

Pot position calibration with accuracy $\sim 100 \mu m$

VFPS: Resolution

Resolution dominated by beam characteristics

- $x_{I\!\!P}$ resolution competetive with main detector reconstruction
- ~ 4 bins in |t|
- ~ 15 bins in ϕ for $|t| > 0.2 \,\mathrm{GeV}^2$

VFPS Physics: Inclusive Diffraction

- 10^6 events for $Q^2 > 5 \text{ GeV}^2$ \rightarrow study *t* dependence $\rightarrow F_2^{D(4)}(Q^2, \beta, x_{I\!\!P}, t)$
- Uncorrelated systematics 2 3% (similar to F₂)
- Extract diffractive pdf's at fixed $x_{I\!\!P}, t$ and predict final states at same $x_{I\!\!P}, t$ to test QCD factorization

VFPS Physics: F_L^D Measurements

$$\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{2(1-y+y^2/2)} F_L^{D(4)} \qquad \text{(where } y = Q^2/s_{ep}x\text{)}$$

Sensitivity to F_L through Φ asymmetry:

$$\frac{d\sigma^D}{d\Phi} \sim \sigma_T^D + \epsilon \sigma_L^D - 2\sqrt{\epsilon(1+\epsilon)} \sigma_{LT}^D \cos \Phi - \epsilon \sigma_{TT}^D \cos 2\Phi$$

- Higher twist *F^D_L* contribution expected dominant at high β calculable in pQCD
 Measure Φ asymmetries vs β, Q²
 VFPS: 15 Φ bins with 10k events each for |t| > 0.2 GeV²
- Leading twist F_L^D (at low β) Indirect extraction through NLO QCD fits (from gluon) to $\sigma_r^{D(4)}$
- Direct F_L measurement: Reduced p beam energy running 40% precision on σ_L^D / σ_T^D expected with 50 pb⁻¹ at $E_p = 500$ GeV

VFPS Physics: Diffractive final states

- Dijets: expect 20k events;
 Open charm (D*): expect 400 events
 (factor 10 more than presently analyzed HERA I data)
- More differential studies (in particular D^*)
- Tests of QCD factorization theorem at fixed $x_{I\!\!P}, t$

VFPS Physics: Exclusive channels

Deeply Virtual Compton Scattering (DVCS):

- Sensitive to GPD's via interference with Bethe-Heitler
- Measure
 - charge asymmetry ($\sim {\rm Re}~{\rm A}_{\rm DVCS})$
 - helicity asymmetry ($\sim {\rm Im} \; A_{\rm DVCS})$

Vector Meson Production:

 $e+p \rightarrow e+p+VM$; $VM=\rho,J/\Psi,\ldots$

Clean elastic channel but only low W accessible

- DVCS + BH in H1 acceptance
- H1 triggered DVCS + BH
- VFPS: DVCS + BH

--- Pure BH contribution

VFPS: Present Status (as of March 2004)

- VFPS was installed in HERA shutdown summer 2003
- Presently whole system is commissioned: trigger, readout, slow control, track and momentum reconstruction
- Clear forward proton tracks already visible!

Detector Design Aspects

- Radiation hard detectors
- Low sensitivity to stray magnetic fields
- Clear process for calibration; possibility for cross-calibration
- Reliable mechanics and electronics for long running without access to detectors
- Monitoring system to control detector position relative to beam, rates, magnet currents
- Many measured points per coordinate to suppress detector noise and fake tracks

Conclusions

Rapidity Gap and M_X methods:

- Large statistics diffractive samples at HERA-I
- Efficient suppression of non-diffractive events by combination of several large- η sensitive detectors
- Dominating syst. uncertainty due to *p* dissociation

H1 Forward Proton Spectrometer:

- Roman Pot technology, scintillating fibers, PSPM's
- allowed measurements of $F_2^{D(3)}$, *t*-dependence, photoproduction with a leading proton
- upgrade for HERA-II to increase detection efficiency and radiation resistance

H1 Very Forward Proton Spectrometer:

- 2 new Roman Pots at z = 220 m; based on FPS technology
- Fully efficient; big potential for diffractive physics ($F_2^{D(4)}$, jets, charm, DVCS)
- Status: Installed and being commissioned now