XXXIV International Symposium on Multiparticle Dynamics Sonoma County, California, USA July 26^{th} - August 1^{st} , 2004

Jet production in neutral current deep inelastic ep scattering

• Jet production in neutral current deep inelastic ep scattering up to $\mathcal{O}(\alpha_s)$:

• Jet production cross section:

$$d\sigma_{
m jet} = \sum_{a=q,ar q,g}\int dx \ f_a(x,\mu_F) \ d\hat\sigma_a(x,lpha_s(\mu_R),\mu_R,\mu_F)$$

- f_a : parton a density in the proton, determined from experiment \rightarrow long-distance structure of the target
- $-\hat{\sigma}_a$: subprocess cross section, calculable in pQCD
 - \rightarrow short-distance structure of the interaction

Jet production in photoproduction

• Jet production in photoproduction up to $\mathcal{O}(\alpha_s)$:

Jet production cross section:

$$d\sigma_{
m jet} = \sum_{i,j} \int_0^1 dy \, dx_\gamma \, dx_p \, f_{\gamma/e}(y) \, \, f_{i/\gamma}(x_\gamma,\mu_{F_\gamma}) \, \, f_{j/p}(x_p,\mu_{F_p}) \, d\hat{\sigma}_{i(\gamma)j}(i(\gamma)j
ightarrow {
m jet jet})$$

 $\begin{array}{l} - \ f_{j/p}(f_{i/\gamma}) \text{: parton density in the proton (photon)} \\ \rightarrow \ \text{long-distance structure of the target} \\ - \ \hat{\sigma}_{i(\gamma)j} \text{: subprocess cross section, calculable in pQCD} \\ \rightarrow \ \text{short-distance structure of the interaction} \end{array}$

DGLAP evolution

• A wealth of data from fixed target and collider experiments has allowed an accurate determination of the proton PDFs: evolution of the PDFs with μ_F generally described by DGLAP equations

• To leading log accuracy, DGLAP evolution is equivalent to the exchange of a parton cascade with the exchanged partons strongly ordered in virtuality:

$$Q^2 \gg k_{Tn}^2 \gg \ldots \gg k_{T2}^2 \gg k_{T1}^2$$

proton

- At high scales (Q, $E_T^{\rm jet}$), calculations using the DGLAP evolution equations give a good description of the data at NLO
- \Rightarrow Measurements of jet production have provided
 - → sensitive tests of pQCD (short-distance structure)
 - ightarrow precise determinations of $lpha_s$

- DGLAP approximation expected to break down at low x since only leading logs in Q^2 are resummed and contributions from $\log 1/x$ are neglected \rightarrow when $\log Q^2 \ll \log 1/x$, terms proportional to $\alpha_s \log 1/x$ become important
- This breakdown may have been observed in forward jet and production at HERA
- Several theoretical approaches exist which account for low-x effects:
 - BFKL evolution: resummation of large $\log 1/x$ to all orders (very low x) \rightarrow no k_T ordering
 - CCFM evolution: angular-ordered parton emission (low and larger x) \rightarrow equivalent to BFKL for $x \rightarrow 0$ and to DGLAP at large x
 - virtual-photon structure: higher-order QCD effects mimicked at low x by introducing a second k_T -ordered parton cascade on the photon side \rightarrow resolved is expected to contribute for $(E_T^{\text{jet}})^2 > Q^2$ and suppressed with increasing Q^2

Theoretical calculations

• DGLAP evolution:

- NLO QCD calculations
 - \rightarrow for dijets: $A \alpha_s + B \alpha_s^2$ (DISENT)
 - \rightarrow for three jets: $C lpha_s^2 + D lpha_s^3$ (NLOJET)
- Leading-logarithm parton-shower Monte Carlo models \rightarrow RAPGAP (direct or direct+resolved): generates k_T -ordered parton cascades as in DGLAP evolution
- Monte Carlo calculations beyond DGLAP, which incorporate low-x effects:
 - CASCADE: based on k_T factorised unintegrated parton distributions (CCFM)
 - ARIADNE: generates non- k_T ordered parton cascades based on the color dipole model (BFKL-like)

Experimental evidence for DGLAP breakdown

- Experimentally, deviations from DGLAP evolution are expected at low x and forward jet rapidity since parton emission along the exchanged gluon ladder increases with decreasing x
- In DGLAP, partons entering the hard process with negligible k_T produce a back-to-back configuration at LO ($\Delta \phi \sim 180^{\circ}$) $\rightarrow \Delta \phi < 180^{\circ}$ occur in DGLAP due to higher-order QCD effects
- Also, $\Delta \phi < 180^{\circ}$ in models which predict a significant proportion of partons entering the hard process with large k_T (BFKL, CCFM): number of events with small $\Delta \phi$ increases

 \rightarrow insight into low-*x* dynamics can be gained also by studying the azimuthal separation between the two hardest jets: an excess of events at small $\Delta \phi$ would signal a deviation from DGLAP evolution

Forward jet production at low x in NC DIS

- Jets searched with k_T algorithm in the LAB frame
- At least one jet with $E_T^{
 m jet} > 3.5$ GeV and $1.7 < \eta^{
 m jet} < 2.8$; $x_{
 m jet} = \frac{E_{
 m jet}}{E_T} > 0.035$ and $0.5 < \frac{(E_T^{
 m jet})^2}{Q^2} < 5$
- Kinematic range: $5 < Q^2 < 85$ GeV 2 and 0.0001 < x < 0.004
- \rightarrow Forward-jet cross section rises with decreasing x
- Comparison to NLO predictions (DISENT): $-\mu_R^2 = \langle (E_T^{
 m jet})^2 \rangle = 45~{
 m GeV}^2$ $-p~{
 m PDFs:}~{
 m CTEQ6M}$
 - \rightarrow The measured forward-jet cross section is described by the prediction for large x values
 - \rightarrow At low x values, there is a large excess of data wrt to NLO QCD (DGLAP)

Forward jet production at low x in NC DIS

H1 preliminary

- \rightarrow Forward-jet cross section rises with decreasing x
- Comparison to Monte Carlo predictions:
 - → RAPGAP (DGLAP evolution): similar to NLO prediction
 - \rightarrow RAPGAP (res+dir) and ARIADNE (CDM): good description of data for x > 0.001
 - \rightarrow CASCADE (J2003): lower (higher) than data at low (high) x

ullet No model can describe the sharp rise of the data at very low x

X_{Bi}

8

 $-\pi$

- Jets searched with k_T algorithm in the $\gamma^* p$ cms frame
- At least two jets with $E_T^* > 5$ GeV, $-1 < \eta_{
 m LAB}^{
 m jet} < 2.5$ and $E_{T,
 m max}^* > 7$ GeV
- Kinematic range: $5 < Q^2 < 100$ GeV 2 and $10^{-4} < x < 10^{-2}$
- \rightarrow A significant fraction of events observed at small azimuthal separation
- The measurement of a multi-differential cross section as a function of x, Q^2 and $\Delta \phi^*$ is difficult due to large migrations
- The ratio

$$ightarrow S = rac{\int_0^lpha N_{2
m jet}(\Delta\phi^*,x,Q^2)d\Delta\phi^*}{\int_0^\pi N_{2
m jet}(\Delta\phi^*,x,Q^2)d\Delta\phi^*}, \ lpha = rac{2}{3}$$

is better suited to test small-x effects

EPJ C 33 (477) 2004

• The data rise towards low x, especially at low Q^2

EPJ C 33 (477) 2004

- → Useful comparison provided by models with higher-order effects: parton-shower approach in Monte Carlo models
- Comparison to RAPGAP predictions: (DGLAP)
 - \rightarrow good description of data at large Q^2 and x
 - \rightarrow fail to describe the increase towards low x, especially at low Q^2
 - \rightarrow improved description of data when incorporating resolved photons, but still prediction too low at low x and low Q^2

EPJ C 33 (477) 2004

$\overline{|x |}$ and $\overline{Q^2}$ dependence of S

- If discrepancies are due to influence of non- k_T -ordered parton emissions, models based on the CDM or CCFM may give a better description
- Comparison to CDM predictions (ARIADNE):
 - ightarrow good description of data at low x and Q^2
 - ightarrow prediction below the data at high Q^2
- Comparison to CCFM predictions (CASCADE): s
 - \rightarrow JS2001: significantly above the data
 - → Jung2003-set 2: closer to the data

 \rightarrow The ratio S is sensitive to the details of the unintegrated gluon distribution

Multijet production in NC DIS

- \rightarrow Events with three jets can be seen as dijet processes with additional gluon radiation or splitting of a gluon in a $q\bar{q}$ pair
- ightarrow Direct tests of QCD beyond LO: $\sigma_{3
 m jet}\propto lpha_s^2$

Dijet and three-jet cross sections in NC DIS: $d\sigma/dQ^2$

ZEUS preliminary

- Jets searched with k_T algorithm in the Breit frame
- At least two jets with $E_{T,{
 m B}}^{
 m jet} > 5$ GeV and $-1 < \eta_{
 m LAB}^{
 m jet} < 2.5$
- Kinematic range: $10 < Q^2 < 5000$ GeV 2 ,0.04 < y < 0.6 and $\cos \gamma < 0.7$
- Events with $M^{
 m 3j}(M^{
 m jj})>25$ GeV were selected
- Comparison to NLO ($\mathcal{O}(\alpha_s^2)$ and $\mathcal{O}(\alpha_s^3)$) predictions (NLOJET): $\rightarrow \mu_R^2 = Q^2 + \bar{E}_T^2$ $\rightarrow \mu_F^2 = Q^2$
 - $\rightarrow p$ PDFs: CTEQ6
- The measured dijet and three-jet cross sections are well described by the predictions
- \rightarrow Potentially useful observable to make an accurate determination of α_s

Q^2 dependence of the three-jet to dijet cross section ratio

- The measured ratio is well described by the **NLO** calculations
- Observable sensitive to value of $\alpha_s(M_Z)$ \rightarrow possibility to extract α_s from the ratio:

 $\rightarrow \alpha_s(M_Z) = 0.1179 \pm 0.0013 \text{ (stat.)} \begin{array}{c} +0.0028 \\ -0.0046 \text{ (exp.)} \begin{array}{c} +0.0061 \\ -0.0047 \text{ (th.)} \end{array}$

15

ZEUS

Jet substructure

- The internal structure of a jet is expected to depend mainly on the type of primary parton, quark or gluon, from which it originated and to a lesser extent on the particular hard scattering process
- At sufficiently high jet transverse energy, where fragmentation effects become negligible, the jet substructure is expected to be calculable in pQCD
- pQCD predicts that gluon-initiated jets are broader than quark-initiated jets due to the larger colour charge of the gluon
- The jet substructure can be studied using the jet shape:

 $\psi(r)$: fraction of the jet transverse energy that lies inside a cone in the $\eta - \varphi$ plane of radius r, concentric with the jet axis

$$\psi(r) = rac{E_T(r)}{E_T^{
m jet}} \longrightarrow \langle \psi(r)
angle = rac{1}{N_{
m jets}} \sum_{
m jets} rac{E_T(r)}{E_T^{
m jet}}$$

mean integrated jet shape

Mean integrated jet shape: $\eta^{ m jet}$ regions (γp)

 $\begin{array}{c} \mathbf{\hat{L}} & 1 \\ \mathbf{\hat{J}} \neq \\ \mathbf{\hat{V}} & \mathbf{0.8} \end{array}$

0.6

- Jets searched with k_T algorithm in the LAB frame
- At least one jet with $E_T^{
 m jet} > 17$ GeV and $-1 < \eta^{
 m jet} < 2.5$
- Kinematic range: $Q^2 < 1$ GeV 2 and 0.2 < y < 0.85

- $ightarrow \langle \Psi(r)
 angle$ in different $\eta^{
 m jet}$ regions: jets become broader as $\eta^{
 m jet}$ increases
- Comparison to QCD predictions:
- → Models including initial and final state QCD radiation (PYTHIA):
 - good description of the data for $-1 < \eta^{
 m jet} < 1.5$
- ightarrow For 1.5 $<\eta^{
 m jet}<$ 2.5: the measured jets are slightly broader than the predictions
- --> The measured jets are quark-like for $-1 < \eta^{
 m jet} < 0$ and become increasingly more gluon-like as $\eta^{
 m jet}$ increases

ZEUS

 $-1 < \eta^{jet} < 0$

ZEUS

 $0 < \eta^{jet} < 1$

Mean integrated jet shape: E_T^{jet} regions (NC DIS)

- Jets searched with k_T algorithm in the LAB frame
- At least one jet with $E_T^{
 m jet} > 17$ GeV and $-1 < \eta^{
 m jet} < 2.5$
- Kinematic range: $Q^2 > 125~{
 m GeV}^2$

 $ightarrow \langle \Psi(r)
angle$ in different $E_T^{
m jet}$ regions: the jets become narrower as $E_T^{
m jet}$ increases

• Comparison to NLO QCD predictions: \rightarrow The data are well described by the NLO QCD calculations: the fractional differences between the measurements and the predictions amount to less than 0.2% for r = 0.5

ZEUS

Mean integrated jet shape: $\eta^{ m jet}$ and $E_T^{ m jet}$ dependence (DIS and γp)

 $\rightarrow \alpha_s(M_Z) = 0.1176 \pm 0.0009 \text{ (stat.)} \begin{array}{c} +0.0009 \\ -0.0026 \text{ (exp.)} \begin{array}{c} +0.0091 \\ -0.0072 \text{ (th.)} \end{array}$

- To study the dynamics of the hard subprocesses in detail:

ZEUS

- Comparison with leading-logarithm parton shower MC calculations:
 - * MC area-normalised to data of each type
 - → same selection as data: good description of shape of data by PYTHIA
 - → quark/gluon selection: good description of shape of data by PYTHIA for narrow jets and similar for broad jets
- ightarrow broad jets dominated by $q_\gamma g_p
 ightarrow qg$ subprocess
- ightarrow narrow jets dominated by $\gamma g
 ightarrow q ar q$ subprocess

Jet production at HERA

• $d\sigma/d \cos \theta^*_{broad}$ for a sample of broad-narrow dijet events measured wrt the broad jet shows different behaviour on the negative and positive sides:

ZEUS

• HERA has become a unique QCD-testing machine due to

\rightarrow at large scales:

– considerable progress in understanding and reducing uncertainties led to

