Status and Prospects for low x Physics at HERA

E. Elsen DESY

Eckhard.Elsen@desy.de

ISMD 2004

Status Structure Function

ZEUS+H1

- rise of F2 at small x
- enhanced by scaling violations
- no ab initio distributions for each flavour and gluon

-
$$Q^2 = sxy$$

Sonoma, July 26 - August 1, 2004

Eckhard.Elsen@desy.de

Extraction of Parton Distributions

- Gluon dominates at small x (and not so small Q²)
- Precision at very small x not sufficient for reliable extrapolations to the smallest x at the LHC

Uncertainty of Gluon Extraction from Structure Function analysis

Need for F_L measurement

F₁ LO, NLO, NNLO and resummed - H1 Simulation of Data

- F_L is directly sensitive to the gluon content
- Measurement requires runs at various proton energies
- necessary to pin down the gluon, i.e. effects of
 resummation etc. in NNLO at low x

x-Q² Correlation at HERA

- small x implies
 small Q²
- need for medium x
 and small Q² data

Eckhard.Elsen@desy.de

F2 at small x (<0.01)

- small x region described by

$$F_2 = c(Q^2)x^{-\lambda(Q^2)}$$

coefficient c fairly independent of
 Q²

Q² Dependence

- low Q² barely understood $Q^2 \approx 1 \text{ GeV}^2$

transition occurs in region where "size of photon" considerably smaller than proton

Dipole Model

$$\sigma^{\gamma^* p}(x, Q^2) = \int d^2 r dz \underbrace{P^{\gamma^*}(Q^2, r, z)}_{=} \hat{\sigma}(x, r)$$

Saturation Model à la GBW

Dipole Form.

$$\hat{\sigma}(x,r) = \sigma_0 \left\{ 1 - \exp\left(-\frac{r^2}{4R_0^2(x)}\right) \right\}$$
$$R_0^2(x) = \frac{1}{\text{GeV}^2} \left(\frac{x}{x_0}\right)^{\lambda}$$

including gluon evolution

$$\hat{\sigma}(x,r) = \sigma_0 \left\{ 1 - \exp\left(-\frac{\pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2)}{3 \sigma_0}\right) \right\}$$

Dipole Model

$$\sigma^{\gamma^* p}(x, Q^2) = \int d^2 r dz \underbrace{P^{\gamma^*}(Q^2, r, z)}_{\text{Dipole Form.}} \hat{\sigma}(x, r)$$

...motivating the dipole term using the Balitsky-Kovchegov non-linear evolution equations... (see J. Bartels talk)

successful ansatz for
description of
photoproduction
DIS

- Diffraction

Kinematic Plane

Eckhard.Elsen@desy.de

ISMD 2004

Section States

Why small x?

small x refers to the high energy limit of QCD since $W^2 = \frac{Q^2}{x}(1-x) \approx Q^2/x$

enter regions of

large gluon densities while retaining potentially the power of (modified) perturbative calculations

new QCD dynamics

and the second

correlated gluon emission

Eckhard.Elsen@desy.de

ISMD 2004

Example: Forward Jet Production

-3

X

10

require better forward reconstruction for full assessment

Experimental Prospects at HERA II

- mini beta magnet restrict acceptance at HERA II
- HERA accelerator operation ends in 2007

Expect some improvement over HERA I data but smallest x is excluded.

If HERA were to remain operational...

Dedicated new experiment

Positron Hemisphere EM calorimeter end-wall at 5.0 m

EM barrel calorimeter

covering $z=\pm70$ cm.

EM catcher calorimeters at z=+90 cm and z=+170 cm

> Proton Hemisphere EM and hadron calorimeter end-wall at 4.8 m

A Caldwell et al.

EM catcher calorimeters

at z=-90 cm and z=-170 cm

and upgrade proposal for H1 expt.

Program

- low x
 - pA (increased gluon density); $Q_S^2 \propto A^{1/3}$ - F_L
 - t-dependence of VM DVCS

However little chance of realisation given DESY's other commitments.

Role of LHC

Largely self-consistent approach since same physics can be measured in various combinations of x₁ and x₂

Assess pdfs in

- in W + jet events
- jet + photon events

Limitation

- absolute energy scale
- missing cross calibration

Conclusions

- low x is key to QCD understanding
 - high gluon density non-linear evolution
 - saturation? link to diffraction.
- Future progress depends on
 - ep scattering, possibly with modified detectors/acceptance
 - LHC at low luminosity

Sector States

Eckhard.Elsen@desy.de

ISMD 2004