# The H1 forward proton taggers: physics prospects

Tinne Anthonis University of Antwerpen Tinne.Anthonis@ua.ac.be

(on behalf of the H1 Collaboration)

XXXIV International Symposium on Multiparticle Dynamics July 26 - August 1, 2004 Sonoma State University, Sonoma County, California, USA



#### Outline:

- Introduction
- > Physics results from HERA I
- > Very Forward Proton Spectrometer
- > Physics prospects for HERA II



# Diffraction at HERA

Large fraction of diffractive events (~ 10%)



- $Q^2$ , x (or W),  $M_X$
- longitudinal momentum fraction of the proton carried by the colourless exchange:

$$x_{IP} = \frac{q \cdot (P - p_Y)}{q \cdot P} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2}$$

• longitudinal momentum fraction of the colourless exchange carried by the struck quark:

$$\beta = \frac{x}{x_{IP}} \approx \frac{Q^2}{Q^2 + M_X^2}$$

• four-momentum transfer squared *t* 

#### HERA I:

- > Measurements of  $F_2^D$ , incl. final states, jets, charm, excl.VM, DVCS, ...
- BUT statistically (exclusive channels) and systematically (proton dissociation) limited !

#### HERA II :

- > Major upgrade of the H1 detector
- > High luminosity: need for efficient diffractive trigger (low  $Q^2$  downscaled)
- > Need for clean selection by directly tagging the elastically scattered proton

# HERA I results: $F_2^{LP}$



### Very Forward Proton Spectrometer

- > VPFS location is optimised for acceptance → 220m NL
- Proton beam is approached horizontally (use HERA bend)
- Bypass is needed to access the beam pipe in the cold section of HERA





### VFPS: Acceptance + Resolution

- > VFPS uses dispersion of HERA bend to detect protons with small t and  $x_{IP}$  (dominant region for *IP* exchange)
- > Acceptance range:

|            | FPS-H               | FPS-V     | VFPS        |
|------------|---------------------|-----------|-------------|
| t          | 0.2 - 0.4           | 0 0.15    | 0 0.25      |
| $x_{I\!P}$ | $10^{-5} - 10^{-2}$ | 0.05-0.15 | 0.01 - 0.02 |
| local acc. | ~ 30%               | ~ 100%    | ~100%       |



- Resolution dominated by the beam characteristics (with minimal sensitivity to the spatial resolution of the fibre detector)
- >  $x_{IP}$  resolution is competitive with the  $x_{IP}^{H1}$
- $> \sim 4$  bins in *t*
- $\sim 15$  bins in  $\Phi$  for |t| > 0.2 GeV<sup>2</sup>



### Physics prospects: Inclusive diffraction

Luminosity 350 pb<sup>-1</sup> (3 years of HERA II running with 50% VFPS operation efficiency)

- > Measure full  $F_2^{D(4)}(Q^2 , \beta, x_{IP}, t)$
- > Systematic errors can approach the level of  $F_2$
- > Study t dependence  $F_2^{D(4)}(Q^2, \beta, x_{IP}, t)$
- > Test hard scattering factorisation (extract diffr. pdf's at fixed x<sub>IP</sub> and t + predict final states)
- > Test Regge factorisation (look for variations in diffr. pdf's with x<sub>IP</sub> and t)
- > Event yields:

| event sample                    |        |
|---------------------------------|--------|
| $0.0 <  t  < 0.2 \text{ GeV}^2$ | 810000 |
| $0.2 <  t  < 0.4 \text{ GeV}^2$ | 160000 |
| $0.4 <  t  < 0.6 \text{ GeV}^2$ | 23000  |
| $0.6 <  t  < 0.8 \text{ GeV}^2$ | 3000   |

t INTEGRATED  $\sigma_r^{D}$  (350 pb<sup>-1</sup>)



# Physics prospects: $F_L$ measurements

$$\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{2(1 - y + \frac{y^2}{2})} F_L^{D(4)}$$

#### Φ asymmetry:

- > Access to longitudinal and transverse polarized photon contributions to cross-section
- > pQCD calculable higher twist  $F_L^{\ D}$  expected dominant at high  $\beta$ 
  - → Measure  $\Phi$  asymmetries as a function of  $\beta$  (and  $Q^2$ ) (VFPS can measure 15 bins in  $\Phi$ )

#### Leading twist $F_{L}^{D}$ :

#### > Indirect extraction at low $\beta$ from NLO QCD fits (gluons!) to $\sigma_r^{D(4)}$

$$y = Q^2 / s_{ep} x$$



# Physics prospects: Hadronic final states



Diffractive Dijet electroproduction (photoproduction):

> 96/97 dijet analysis yielded: 2500 events

> HERAII/VFPS expectation: 22900 events

#### Open charm production:

- > 96/97 D<sup>\*</sup> analysis yielded:  $46 \pm 10$  events
- > HERAII/VFPS expectation: 380 events
- → more differential studies
- direct vs resolved photon contributions (rapidity gap survival probabilities)
- tests of diffractive factorisation theorem (with cancellation of VFPS systematics)

Dijet

Charm

# Physics prospects: Exclusive channels

100000

x'

#### Deeply Virtual Compton Stattering (DVCS):



- Calculable in pQCD
- Sensitive to GPD's (extension of pdf for x ≠ x') via interference with Bethe-Heitler process
  - → Measure charge ( $\Re e(A_{DVCS})$ ) and helicity ( $\Im m(A_{DVCS})$ ) asymmetries

#### Vector Meson production:

 $e+p \mathop{\rightarrow} e+p+VM$  ;  $VM=\rho$  ,  $J/\psi$  , ...

> Clean elastic channel BUT only low *W* accesible





### Summary

- > VFPS needed to trigger diffractive events at HERA II
- Clean tagging of diffractive scattered proton
- > High and well understood acceptance in window around  $x_{IP} = 0.01$
- Good resolution on reconstructed proton momentum
- > Installation cold beam line bypass successful
- > VFPS completely installed and operational
- Many interesting physics results to come:
  - \*  $F_2^{D}$ , t dependence,  $F_L^{D}$  and  $\Phi$  asymmetries
  - Final states (dijet, open charm) + tests of factorisation
  - \* DVCS (access to GPD's) and Vector Meson production

#### Backup slides

# QCD and Regge factorisation

QCD hard scattering factorisation:

 $\sigma^{\gamma^* p \to p^X} = \sigma^{\gamma^* i} \otimes f_i^D$ 

- σ<sup>γ\*i</sup> the universal partonic cross section (same as in inclusive DIS)
- *f*<sub>i</sub><sup>D</sup> the parton distribution function for a parton *i* under the constraint that the proton survives the diffractive scattering (*f*<sub>i</sub><sup>D</sup> should obey the DGLAP evolution equations)

Regge factorisation:

$$f_i^D(x, Q^2, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot f_i^{IP}(\beta = x/x_{IP}, Q^2)$$

- *f*<sub>*IP/p*</sub> "pomeron flux factor" (can be parameterized according to Regge theory)
- $f_i^{I\!P}$  "pomeron parton distribution"



#### HERA I results: t measurement

$$\frac{d\sigma}{dt} \sim \mathrm{e}^{-bt}$$

Regge phenomenology: expect shrinkage with W

$$b = b_0 + 2 \alpha'_{IP} \log(\frac{1}{x_{IP}})$$

Inconclusive so far
Need more data !



### Beam simulation studies



#### Non-linear corrections !

- > Non-linear effects in energy deviation
- Sextupoles
- > Offset, tilted magnets

# **VFPS** Acceptance



- Use beam line simulation
- Detectors approach beam up to 12 times the beam enveloppe + 3 mm "coasting beam margin"
- Horizontal FPS needs large t to separate protons
- > Vertical FPS uses dispersion of magnet, needs large  $x_{IP}$
- > VFPS uses dispersion of HERA bend to detect protons with small *t* and  $x_{IP}$  (dominant region for *IP* exchange)
- > Acceptance range:

|            | FPS-H               | FPS-V     | VFPS        |
|------------|---------------------|-----------|-------------|
| t          | 0.2 - 0.4           | 0 0.15    | 0 0.25      |
| X_{[]?     | $10^{-5} - 10^{-2}$ | 0.05-0.15 | 0.01 - 0.02 |
| local acc. | ~ 30%               | ~ 100%    | ~100%       |



The H1 forward proton taggers: physics prospects

Tinne Anthonis

### **VFPS** Reconstruction

- 2 Roman Pot stations, 2 detectors each
- Measure position and slope in between both Roman Pot stations
- > Reconstruct proton momentum  $(x_{IP}, t, \Phi) \sim (x_{IP}, \theta_x, \theta_y)$
- > Reconstruction fit:

$$\chi^{2} = \Sigma_{ij} (x_{i}^{m} - x_{i} (x_{IP}, \theta_{x}, \theta_{y})) c_{ij} (x_{j}^{m} - x_{j} (x_{IP}, \theta_{y}))$$

where  $c_{ii}$  is the covariance matrix containing:

- > beam characteristics (spread, divergence)
- > fibre detector resolution

#### non-linear effects complicate the reconstruction!



# **VFPS** Resolution



- > Resolution dominated by the beam characteristics (with minimal sensitivity to the spatial resolution of the fibre detector)
- >  $x_{IP}$  resolution is competitive with the reconstruction of  $x_{IP}$  by H1
- $> \sim 4$  bins in *t*
- $\sim 15$  bins in  $\Phi$  for |t| > 0.2 GeV<sup>2</sup>

# VFPS Alignment





- > Exploit  $x_{IP}$  measurement by H1
- > Use forward peak t = 0
- Calibration fit:

$$\chi^{2} = \frac{\theta_{x}^{2}}{\sigma_{x}^{2}} + \frac{\theta_{y}^{2}}{\sigma_{y}^{2}} + \frac{(x_{IP} - x_{IP}^{HI})}{\sigma_{(x_{IP} - x_{IP}^{HI})}^{2}}$$

- > Alignment precision of  $\sim 100 \ \mu m$  is feasible
- > Alternative fits are possible with e.g. elastic rho mesons



# Cold beam line bypass

Modification of 10m drift segment: horizontal bypass for helium and superconductor lines



Tinne Anthonis

#### Cold beam line bypass



#### Roman Pot insert



### VFPS detector

Beam

#### VFPS detector:

> 2 detectors per Roman Pot station
> 1 detector: 4 trigger tiles in u-direction + u fibre plane + v fibre plane + 4 trigger tiles in v-direction
> Spatial detector resolution ~ 100 µm
> Cosmic tests: very good efficiency (~99%)

#### Fiber specifications:

- » Diameter 480 µm
- ≻ Pitch 340 µm

#### Optical connection:

> 5 fibre layers (= 1 plane) → 1 light guide
> 4 light guides → 1 PSPM pixel (multiplexing)





### VFPS in the HERA tunnel

