

ICHEP'04 QCD soft interaction Search for QCD Instanton Induced Processes in DIS at HERA

On Behalf of ZEUS-Collaboration Z.Ren Columbia Univ.

Overview:

- Instantons in DIS
- **Event Signature**
- **Data Selection**
- Signal Enhancement
- Result
- Conclusion

Aug. 17, 04

What is an Instanton?

Instanton is a chunk of energy tunneling between different QCD vacuum states

- Vacuum is defined as state with lowest energy, but it can not be "zero energy" because of Heisenberg's Uncertainty Principle. E.g. the "Casimir-Effect" in electromagnetism.
- QCD should have an infinity number of vacuum states separated by potential walls because it is a non-Abelian gauge theory.

Instantons in DIS: Event Signature

Comparing Perturbation Theory with Lattice Calculation

3

Aug. 17, 04

 $\approx 0.35 \, \text{fm}$ $\rho \lesssim \rho_{max}$ $\frac{P \sim P_{\text{max}}}{\frac{R}{\rho} \gtrsim \left(\frac{R}{\rho}\right)_{\text{min}}} \approx 1.05 \Rightarrow \begin{cases} Q^{\prime 2} \gtrsim 113 \,\text{GeV}^2 \\ x^{\prime} \gtrsim 0.35 \end{cases}$

Cross section in this range predicted by A.Ringwald & F.Schrempp and for $0.1 < y < 0.9, x > 10^{-3}$

$$\sigma_{\scriptscriptstyle HERA} \approx 10 - 100 \, pb$$

Sizable number of events on tape expected, but high (factor 100-1000) background

QCDINS Monte-Carlo generator provides full topology 4

Neutral Current DIS Data Selection

Clean neutral current data from 96-97 ZEUS run period with e⁺P colliding beam at HERA

$$E_{e^+} = 27.5 GeV$$

 $E_P = 820 GeV$

 $Q^{2} > 120 GeV^{2}$ $x > 10^{-3}$ y > 0.05 $Q'^{2} > 140 GeV^{2}$

Data	DJANGOH	HERWIG	QCDINS
91846	88300	76400	578

- Predicted instanton cross section 8.9pb
- Instantons only contribute ~0.7%
- Difference between DJANGOH and HERWIG mainly comes from Q² cut

 $38.2 \, pb^{-1}$

Discriminating Variables from Kinematics

Data qualitatively agrees with DJANGOH and HERWIG, but QCDINS shows different distributions

ICHEP'04 QCD soft interaction Discriminating Variables from Shape of Instanton Region

- N_{EFO}
 - Multiplicity of EFOs
- N_{FFT} EFO: energy-flow objects measured by Calorimeter
 - Multiplicity of tracks in reconstructing EFOs

Instanton Shape Variables

0.16

ICHEP'04 QCD soft interaction Instanton Enhancement **Fisher Algorithm** Fisher algorithm

- Use correlations in n-dimensional phase space explicitly
- Discriminant t obtained from S, C, $P_{\scriptscriptstyle t}{}^{\scriptscriptstyle current\,jet},\,N_{\scriptscriptstyle EFO},\,N_{\scriptscriptstyle EFT}\,and\,\epsilon'$ ZEUS

Result: Limit Setting Method

• Background independent method, by applying hard cuts and assuming normal DIS background to be zero Cut: $Q'_{DA}^2 < 250 GeV^2$

- Conservative upper limit

Cut:
$$Q'_{DA}^2 < 250 GeV^2$$

 $t > t_0$

- r₁
 Ratio of events left in QCDINS after instanton enhancement selection
- r_N

 Ratio of events left in DJANGOH(HERWIG) after instanton enhancement selection
- P_s
 - r_I / r_N, describes the separation power

Result: Background Independent Limit

	r_I [%]	DATA	QCDINS	DJANGOH	P_S	HERWIG	P_S
t > 8.0	32.6	1847 ± 43	188.5 ± 1.7	2592 ± 26	12	2145 ± 27	14
t > 8.5	24.0	925 ± 30	139.0 ± 1.4	1338 ± 19	17	1091 ± 19	21
t > 9.0	16.4	424 ± 21	95.1 ± 1.2	630.2 ± 13	24	524.1 ± 13	29
t > 9.5	10.1	179 ± 13	58.4 ± 0.9	263.8 ± 8.3	36	229.5 ± 8.8	41
t > 10.0	5.5	76 ± 8.7	31.8 ± 0.7	105.6 ± 5.3	49	89.8 ± 5.5	58
t > 10.5	2.7	33 ± 5.7	15.7 ± 0.5	35.1 ± 3.0	73	35.1 ± 3.4	73

- An upper limit can be derived for any choice of r_I
- Without an explicit choice of r_l, at 95% c.l., an upper limit of 26pb (r_l≈4.6) is set, compared with theory predicted 8.9pb

Conclusion

- A search of instanton induced events has been performed at ZEUS in NC DIS data based on 38pb⁻¹ in the kinematics range Q²>120GeV², x>10⁻³
- At 95% c.l., an upper limit of 26pb is set, compared with predicted 8.9pb
- Result still consistent with predictions by A.Ringward and F.Schrempp, but not so far away

Instanton Portrait in ZEUS Detector (MC)

Result: Limit Setting Methods

Limits obtained from two different ways:

- Fit method, from fit of sphericity distribution in instanton enhanced samples
 - Use f_I, portion of instantons inside the data sample, as parameter, and define

 $\chi^{2}(f_{\rm I}) = \sum_{i=1}^{n_{\rm bins}} \frac{\{n_{iD}^{*} - [f_{\rm I} \cdot n_{iI}^{*} + (1 - f_{\rm I}) \cdot n_{iN}^{*}]\}^{2}}{\sigma_{iD}^{*}^{2} + f_{\rm I}^{2} \sigma_{iI}^{*}^{2} + (1 - f_{\rm I})^{2} \sigma_{iN}^{*}^{2}}$ $- \text{ Set } 2\sigma \text{ limit according to maximum likelihood method}$

- Sensitive to exact description of the DIS background
- Background independent method, by applying hard cuts and assuming normal DIS background to be zero
 - Conservative upper limit

Result: Sphericity Fit Approach

