Pentaquark Searches with ZEUS

Amita Raval - DESY for the ZEUS Collaboration ICHEP - Beijing, August 2004

Introduction

Strange Pentaquarks: Θ^+ , Ξ^{--}

Charm Pentaquark: Θ_c

Conclusions

A.Raval, ICHEP, August 16, 04 - p.1/21

Evidence of Pentaquarks

Marek Karliner – Recontres du Moriond, La Thuille, March 29, 2004

 $\Theta^+{\rightarrow}\,n{\rm K}^+$ \Rightarrow higher mass

 $\Theta^+ \rightarrow \mathsf{pK}^0_S \Rightarrow \mathsf{lower mass}$

Also evidence for:

NA49: Ξ^{--} (ddssū) H1: Θ_c (uuddī) Fixed target: pq's use valence quarks High energy: pq's via fragmentation

Pentaquarks in High Energy Collisions

HERA:
$$e^{\pm}p \rightarrow e'X$$

 \sqrt{s} = 300 (318) GeV \Rightarrow ep CM energy before(after) 98

• $Q^2 = -q^2$: photon virtuality $Q^2 > 1 \text{ GeV}^2$: <u>DIS</u> (require scattered electron) $Q^2 < 1 \text{ GeV}^2$: γ -production

$$W = m(\gamma^* p)$$
: $\gamma^* p$ energy

NB: $\bar{u}\bar{u}\bar{d}\bar{d}s$ ($\bar{\Theta}^-$) can only be produced in fragmentation!

Search for Strange Pentaquark: K_S^0 Selection

- $\Theta^+ \rightarrow K^0_S p$ ($\bar{\Theta}^- \rightarrow K^0_S \bar{p}$) reconstruct $K^0_S p(\bar{p})$ inv mass
- Inclusive DIS event sample: $96 - 00 \text{ data} \Rightarrow 121 \text{ pb}^{-1}$
- ${
 m K}^0_{
 m S}$ Selection ${
 m p_T}({
 m K}^0_{
 m S}) >$ 0.3, $|\eta({
 m K}^0_{
 m S})| \le$ 1.5 remove Λ and γ conversions

- Peak: 498.12 \pm 0.01 ${\rm MeV}$
- Background: < 6%
- Candidates: \sim 870,000
- Resolution: 2 \pm .5 ${\rm MeV}$ (MC +
 - consistent w/ K* measurement)

Intermezzo: $K_S^0 K_S^0$ resonances (Phys. Lett. B 578)

- Several resonances observed
- *f*₀(1710): glueball?
- Produced in gluon rich environment

(anti)proton selection \implies define ionization band in dE/dx

- expectations tuned using tagged protons and pions from Λ and ${\rm K}^0_{\rm S}$ decays
- Strange pentaquark dE/dx > 1.15 mips P(p) < 1.5 GeV $\sim 60\%$ proton purity
- Charmed pentaquark $l_p > 0.15 \Rightarrow$ $A(l_p > 0.15) = 85.0 \pm 0.1\%$

A.Raval, ICHEP, August 16, 04 - p.6/21

dE/dx Check: $\Lambda^0(1520)D_{03} \longrightarrow pK^- + c.c.$

Select p, K using dE/dx \Rightarrow

Well established narrow d-wave uds state \Rightarrow isospin 0, charge 0 Isospin 1 partner expected to have higher mass $\Rightarrow \Sigma^+$, X^{++} not expected in same place

- resonance in pK^- + c.c.
- no resonance in $\mathrm{p}\mathrm{K}^+$ + c.c.
- mass and natural width consistent with PDG: $M = 1519.5 \pm 1.0 \text{ MeV}$ $\Gamma = 15.6 \pm 1.0 \text{ MeV}$
- <u>no evidence for</u>
 <u>hypothetical</u> Θ⁺⁺(1530)
 (I=1 pentaquark)

Search for Strange Pentaquark: (Phys. Lett. B 591)

Θ^+ Signal $\Rightarrow p_T(\Theta^+) > 0.5 \text{ GeV}$, $|\eta(\Theta^+)| < 1.5, Q^2 > 20 \text{ GeV}^2$

- M: $1521.5 \pm 1.5(\text{stat})^{+2.8}_{-1.7}(\text{syst})$
- Gaussian W: 6.1 ± 1.5 MeV BW Fit: $\Gamma = 8 \pm 4$ MeV
 - \Rightarrow compatible w/ experimental resolution $\sim 2~{\rm MeV}$
- Fit: 3P Background + 2 Gaussians $\Rightarrow \sim 4.6 \sigma$
- $\chi^2/ndf = 35/44$
- single Gaussian fit \Rightarrow worse χ^2/ndf , peak robust
- if $K^0_{S}p$ interpreted as Θ^+ then $K^0_{S}\bar{p} \Rightarrow \bar{\Theta}^-$ (antipentaquark)?

Θ^+ Cross sections and ratios ($\Theta^+ \rightarrow K^0 p / \Lambda \rightarrow p\pi$)

 $Q^2 > 20 \text{ GeV}^2$, $P_T > 0.5 \text{ GeV}$, $|\eta| < 1.5$

• $\sigma(ep \to e\Theta^+X)$: $125 \pm 27(st)^{+45}_{-40}(sy) \text{ pb}$

• $N(\Theta^+ \to K^0 p(\bar{p})) / N(\Lambda(p\pi))$ as function of Q^2_{\min} : $4.2 \pm 0.9(st)^{+1.2}_{-0.9}(sy)\% \Rightarrow \text{production rate consistent w/ a constant}$

Search for NA49 signal with ZEUS: I

NA49 analysis repeated

- $\Xi^{--} \rightarrow \Xi^{-} \pi^{-} \rightarrow \Lambda^{0} \pi^{-} \pi^{-} \rightarrow p \pi^{-} \pi^{-} \pi^{-}$
- Inclusive DIS event sample: $96 - 00 \text{ data} \Rightarrow 105 \text{ pb}^{-1}$
- high stats, small bground

A.Raval, ICHEP, August 16, 04 - p.10/21

Search for NA49 signal with ZEUS: II

A.Raval, ICHEP, August 16, 04 - p.11/21

•

Search for Charmed Pentaquark: D* Selection

- ($\Theta_c \rightarrow D^*p$)
- 95 00 data $\Rightarrow 126 \text{ pb}^{-1}$
- $\underline{\mathrm{D}^{*+}}$ Selection: $\underline{\mathrm{D}^{*+}} \rightarrow \underline{\mathrm{D}^{0}}\pi_{\mathrm{s}}^{+} \rightarrow$
 - $\frac{1. \ ({\rm K}^-\pi^+)\pi_{\rm s}^+ \ \textbf{+(c.c)}}{{\rm p_T}({\rm D}^*) > 1.35 \ {\rm GeV}}$

 $\frac{2. (K^{-}\pi^{+}\pi^{+}\pi^{-})\pi_{s}^{+} + (C.C)}{p_{T}(D^{*}) > 2.8 \text{ GeV}}$

 <u>Number of D*'s:</u> Total Sample: > 62,000
 DIS Sample: > 13,000

Search for Charmed Pentaquark: Upper Limits

No signal!

- no signal: either channel
- no signal: $Q^2 > 1 \ GeV^2$
- upper limit at 95 % CL $R = N \ (\Theta_c \rightarrow D^*p)/N(D^*p)$ R < 0.23 % R < 0.35 % for $Q^2 > 1 \ GeV^2$ R < 0.29 % for $Q^2 < 1 \ GeV^2$
- universal upper limit $f(c \rightarrow \Theta_c) \cdot B_{\Theta_c \rightarrow D^*p} < 0.21\%$
- $R \sim 1 \%$ excluded at 9 σ

Search for Charmed Pentaquark: H1 Criteria

H1 Selection ...

- $\mathrm{P}_{\mathrm{T}}(\mathrm{D}^{*})$, $\eta(D^{*})$, Q^{2} , y
- Tracking cuts
- $Z(D^*) > 0.2$ (vs. ZEUS $P_T/E_T > 0.12$)
- M(Kπ), ΔM:
 ZEUS nominal ⇒
 (better mass resolution)
 Repeated with H1 values
- Number of D*'s $Q^2 > 1 \text{ GeV}^2$: 5920 \pm 90 $Q^2 < 1 \text{ GeV}^2$: 11670 \pm 140

In Summary ...

Θ^+ (1522) \Rightarrow peak seen in M($\mathrm{K_S^0p}$) and M($\mathrm{K_S^0\bar{p}}$)

• For $\mathrm{Q}^2>$ 20 GeV^2 :

M : $1521.5 \pm 1.5(\text{stat})^{+2.8}_{-1.7}(\text{syst})$

natural width compatible with detector resolution

 \implies consistent with strange pentaquark

• $\Theta^+(\rightarrow \mathrm{K}^0_\mathrm{S}\mathrm{p})$ / $\Lambda(\rightarrow \mathrm{p}\pi) \Longrightarrow \sim 4\%$

production rate consistent with a constant ...

- $K^0_S \bar{p}$: first evidence of antipentaquark? \Rightarrow fragmentation
- Ξ^{--} (1860) \Rightarrow No Signal
 - not confirmed by ZEUS
- $\Theta_{\rm c}(3099) \Rightarrow No Signal$
 - more than 62,000 reconstructed $\mathrm{D}^*\mbox{'s}$
 - ZEUS data are incompatible with H1 report of
 - $\Theta_{\mathbf{c}}~~\text{contributing}~1\%~\text{of}~D^*~\text{production}~\text{ratio}$

Backup - Θ^+ **:** Single Gaussian Fit

A.Raval, ICHEP, August 16, 04 - p.16/21

۲

Fit		Gaussian+Bkg.	2 Gaussians + Bkg.
χ^2/ndf	$M \leq 1700 \; {\rm MeV}$	51/47	35/44
Peak 1	mass (MeV)	-	1465.1 ± 2.9
	width (MeV)	-	15.5 ± 3.4
	events	-	368 ± 121
Peak 2	mass (MeV)	1522.2 ± 1.5	1521.5 ± 1.5
	width (MeV)	4.9 ± 1.3	6.1 ± 1.6
	events	155 ± 40	221 ± 48

Backup - Θ^+ : Q^2_{\min} and W binning ...

: Backup - $\Theta_{\rm c}$

۲

D* decay	$(K\pi)\pi_s$	$(K\pi\pi\pi)\pi_s$	Both			
channel			channels			
Full data sample						
$N_{ m window}$	1710	914				
$N_{ m backgr}$	1678 ± 23	919 ± 19				
$N(D^*)$	42680 ± 350	19900 ± 250				
$R(\Theta_c^0 \to D^* p / D^*)$	< 0.29%	< 0.33%	< 0.23%			
$R^{\rm cor}(\Theta^0_c \to D^* p/D^*)$	< 0.47%	< 0.50%	< 0.37%			
$f(c \to \Theta_c^0) \cdot B_{\Theta_c^0 \to D^* p}$	< 0.18%	< 0.33%	< 0.16%			
DIS with $Q^2 > 1$ GeV 2						
Nwindow	252	220				
$N_{ m backgr}$	252.8 ± 9.2	219.8 ± 8.8				
$N(D^*)$	8680 ± 130	4830 ± 120				
$R(\Theta_c^0 \to D^* p / D^*)$	< 0.41%	< 0.69%	< 0.35%			
$R^{\rm cor}(\Theta^0_c \to D^* p/D^*)$	< 0.59%	< 1.06%	< 0.51%			
$f(c \to \Theta_c^0) \cdot B_{\Theta_c^0 \to D^* p}$	< 0.20%	< 0.56%	< 0.19%			

• A.Raval, ICHEP, August 16, 04 - p.19/21

Total Data Sample

DIS Sample

A.Raval, ICHEP, August 16, 04 – p.20/21

Backup - Θ_c **:** D^*p Full Data Sample / DIS

A.Raval, ICHEP, August 16, 04 - p.21/21