Contact Interaction and Lepton Flavour Violation

Carsten Niebuhr

DESY

representing

and

HERA ep Collider

Electron-Quark Scattering and DIS Kinematics

$$Q^2 = -(k - k') = -q^2$$
four momentum transfer squared $x = -q^2/(2 \cdot P \cdot q)$ Bjorken scaling variable $y = (q \cdot P)/(k \cdot P) = (1 - \cos \theta^*)/2$ inelastici ty $s = 2 \cdot k \cdot P = Q^2/(x \cdot y)$ ep CM energy squared

Electron-Quark Scattering and DIS Kinematics

$$Q^2 = -(k - k') = -q^2$$
four momentum transfer squared $x = -q^2 / (2 \cdot P \cdot q)$ Bjorken scaling variable $y = (q \cdot P) / (k \cdot P) = (1 - \cos \theta^*) / 2$ inelasticity $s = 2 \cdot k \cdot P = Q^2 / (x \cdot y)$ ep CM energy squared

Electron-Quark Scattering and DIS Kinematics

$$Q^2 = -(k - k') = -q^2$$
four momentum transfer squared $x = -q^2 / (2 \cdot P \cdot q)$ Bjorken scaling variable $y = (q \cdot P) / (k \cdot P) = (1 - \cos \theta^*) / 2$ inelastici ty $s = 2 \cdot k \cdot P = Q^2 / (x \cdot y)$ ep CM energy squared

• Effective Lagrange Density (vector terms only) modifies scattering amplitude

 $L_{V} = \sum_{q = u, d} \sum_{a, b = L, R} \eta_{ab}^{q} (\overline{e_{a}} \gamma^{\mu} e_{a}) (\overline{q_{b}} \gamma_{\mu} q_{b}) \text{ with } \eta_{ab}^{q} = \varepsilon_{ab}^{q} \frac{4\pi}{\Lambda^{2}} \text{ and effective mass scale } \Lambda$

• Depending on chiral structure of model which is probed, only some of the couplings contribute. Formalism applicable for many different models (Compositeness, LQs, Quark Structure, Large Extra Dimensions, ...)

→ see separate talk by Eric Kajfasz

• Cross section in presence of CI gets modified at high Q^2 :

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \pm \frac{d\sigma^{IF}}{dQ^2} + \frac{d\sigma^{CI}}{dQ^2}$$

• \Rightarrow sensitivity to scales Λ beyond centre-of-mass energies

Neutral Current Cross Section $d\sigma/dQ^2$

abstract 12-0158

CI Limits on $1/\Lambda^2$ in Compositeness Models

- no evidence for CI signal
- resulting limits are in the range 1.7-6.2 TeV depending on chiral structure of model

		ZE	US	H1		D0		CDF		ALEPH		L3		OPAL		
	Coupling structure															limits comparable
Model	$[\epsilon_{\scriptscriptstyle LL},\!\epsilon_{\scriptscriptstyle LR},\!\epsilon_{\scriptscriptstyle RL},\!\epsilon_{\scriptscriptstyle RR}]$	Λ^{-}	Λ^+	Λ^{-}	Λ^+	Λ^{-}	Λ^+	Λ^{-}	Λ^+	Λ^-	Λ^+	Λ^{-}	Λ^+	Λ^{-}	Λ^+	to those obtained
LL	[+1, 0, 0, 0]	1.7	2.7	1.6	2.8	4.2	3.3	3.7	2.5	6.2	5.4	2.8	4.2	3.1	5.5	at LFP & TeVatron
LR	[0,+1,0,0]	2.4	3.6	1.9	3.3	3.6	3.4	3.3	2.8	3.3	3.0	3.5	3.3	4.4	3.8	
RL	[0, 0, +1, 0]	2.7	3.5	2.0	3.3	3.7	3.3	3.2	2.9	4.0	2.4	4.6	2.5	6.4	2.7	
RR	[0, 0, 0, +1]	1.8	2.7	2.2	2.8	4.0	3.3	3.6	2.6	4.4	3.9	3.8	3.1	4.9	3.5	
VV	[+1, +1, +1, +1]	6.2	5.4	5.5	5.3	6.1	4.9	5.2	3.5	7.1	6.4	5.5	4.2	7.2	4.7	
AA	[+1, -1, -1, +1]	4.7	4.4	4.1	2.5	5.5	4.7	4.8	3.8	7.9	7.2	3.8	6.1	4.2	8.1	
VA	[+1, -1, +1, -1]	3.3	3.2	3.0	2.9											
X1	[+1, -1, 0, 0]	3.6	2.6			4.5	3.9									
X2	[+1, 0, +1, 0]	3.9	4.0													
X3	$[+1, \ 0, \ 0, +1]$	3.7	3.6	3.9	3.7	5.1	4.2			7.4	6.7	3.7	4.4	4.4	5.4	
X4	[0,+1,+1, 0]	5.1	4.8	4.4	4.4	4.4	3.9			4.5	2.9	5.2	3.1	7.1	3.4	
X5	[0,+1, 0,+1]	4.0	4.0													
X6	[0, 0, +1, -1]	2.5	3.5			4.3	4.0									
U1	$[+1, -1, 0, 0]^{eu}$	3.8	3.6													
U2	$[+1, 0, +1, 0]^{eu}$	5.0	4.2													
U3	$[+1, 0, 0, +1]^{eu}$	5.0	4.1									5.2	9.2			
U4	$[0,+1,+1, 0]^{eu}$	5.8	4.8									3.2	2.3			
U5	$[0,+1, 0,+1]^{eu}$	5.2	4.3													
U6	$[0, 0, +1, -1]^{eu}$	2.8	3.4													

Search for Leptoquarks in CI: $M_{LQ} >> \sqrt{s}$

- Leptoquarks appear in many extentions of Standard Model
 - color triplet bosons (scalars or vectors)
 - carry both L and B numbers
 - fractional charge
- Classification in Buchmüller-Rückl-Wyler model
 - dimensionless chiral couplings invariant under SU(3)xSU(2)xU(1)
 - 14 LQ-types (7 scalar, 7 vector)
 - conserved fermion number $F = L+3B = 0, \pm 2$
- at HERA (coupling to valence quarks):
 - $e^+p \rightarrow LQ$ (F=0)
 - $e^p \rightarrow LQ$ (F=2)

Model	Coupling Structure	ZEUS	H1	L3	OPAL	
S_0^L	$a_{\scriptscriptstyle LL}^{eu} = +\frac{1}{2}$	0.61	0.71	1.40	0.98	• depending on LQ type
S_0^R	$a_{_{RR}}^{eu} = +\frac{1}{2}$	0.56	0.64	0.30	0.30	HERA limits are in the
\tilde{S}_0^R	$a^{ed}_{_{RR}} = +\frac{1}{2}$	0.27	0.33	0.58	0.80	range 0.3-1.4 TeV
$S_{1/2}^{L}$	$a^{eu}_{_{LR}} = -\frac{1}{2}$	0.83	0.85	0.54	0.74	
$S_{1/2}^{R}$	$a_{\scriptscriptstyle RL}^{ed} = a_{\scriptscriptstyle RL}^{eu} = -\frac{1}{2}$	0.53	0.37		0.86	• for 50% of all LQs
$\tilde{S}_{1/2}^L$	$a^{ed}_{_{LR}} = -\frac{1}{2}$	0.43	0.43	0.42	0.48	best limits come from
S_1^L	$a_{_{LL}}^{ed} = +1, \ a_{_{LL}}^{eu} = +\frac{1}{2}$	0.52	0.49			H1 or ZEUS
V_0^L	$a_{\scriptscriptstyle LL}^{ed} = -1$	0.55	0.73	1.83	1.27	
V_0^R	$a_{_{RR}}^{ed} = -1$	0.47	0.58	0.51	0.54	
\tilde{V}_0^R	$a_{_{RR}}^{eu} = -1$	0.87	0.99	1.02	1.44	
$V_{1/2}^{L}$	$a_{\scriptscriptstyle LR}^{ed} = +1$	0.47	0.42	0.71	0.90	
$V^R_{1/2}$	$a_{\scriptscriptstyle RL}^{ed} = a_{\scriptscriptstyle RL}^{eu} = +1$	0.99	0.95		0.71	
$\tilde{V}_{1/2}^L$	$a_{\scriptscriptstyle LR}^{eu} = +1$	1.06	1.02	0.54	0.59	
V_1^L	$a_{_{LL}}^{ed} = -1, \ a_{_{LL}}^{eu} = -2$	1.23	1.36			

Lepton Flavour Violation

- Neutrino oscillation \rightarrow Lepton Flavour is not conserved
- Charged leptons: very stringent limits from rare decays, especially for $e \Leftrightarrow \mu$
- At HERA LFV can be mediated by LQs if they couple to different generations

H1 Search for $e^+p \rightarrow \mu X$ and $e^+p \rightarrow \tau X$

H1 Limits on Coupling Constants

- sensitivity drops towards high masses due to steeply falling quark distributions
- some sensitivity extending beyond kinematic limit due to finite width of LQ
- at high masses limits connect to CI limits
- LQ coupling to all 3 generations studied
- best sensitivity for µq channel because
 - low background
 - high selection efficiency

ICHEP04, Beijing: CI and LFV at HERA

High Mass Leptoquark Limits $M_{LQ} >> \sqrt{s}$

	e	$\rightarrow \tau$	2	ZEUS (prel.	F = 0			
e	τ	$\begin{vmatrix} S_{1/2}^L \\ e^- \bar{u} \\ e^+ u \end{vmatrix}$	$S^R_{1/2}$ $e^{-}(\bar{u} + \bar{d})$ $e^{+}(u + d)$	$ \begin{array}{c} \tilde{S}^L_{1/2} \\ e^- \bar{d} \\ e^+ d \end{array} $	$V^L_0 \ e^- ar d \ e^+ d$	$V^R_0 \ e^- ar d \ e^+ d$	$ \begin{array}{c} \tilde{V}_0^R \\ e^- \bar{u} \\ e^+ u \end{array} $	$V_1^L \\ e^-(\sqrt{2}\bar{u} + \bar{d}) \\ e^+(\sqrt{2}u + d) \end{cases}$
	1	$\begin{array}{c c} \tau \to \pi e \\ 0.4 \\ 1.7 \end{array}$	$\begin{array}{c} \tau \rightarrow \pi e \\ 0.2 \\ 1.4 \end{array}$	$\begin{array}{c} \tau \rightarrow \pi e \\ 0.4 \\ 2.6 \end{array}$	$\begin{array}{c} \tau \rightarrow \pi e \\ 0.2 \\ 1.7 \end{array}$	$ au ightarrow \pi e$ 0.2 1.7	$\begin{array}{c} \tau \rightarrow \pi e \\ 0.2 \\ 1.2 \end{array}$	$\begin{array}{c} \tau \rightarrow \pi e \\ 0.06 \\ 0.6 \end{array}$
1	2		$\tau \rightarrow Ke$ 6.3 1.5	$K \to \pi \nu \bar{\nu}$ 5.8×10^{-4} 2.8	$\tau \rightarrow Ke$ 3.2 2.1	$\tau \rightarrow Ke$ 3.2 2.1	1.5	$K \to \pi \nu \bar{\nu}$ 1.5×10^{-4} 0.7
	3	*	$B \rightarrow \tau e$ 0.6 3.0	$\begin{array}{c} B \rightarrow \tau e \\ 0.6 \\ 3.1 \end{array}$	$B \rightarrow \tau e$ 0.3 2.5	$B \rightarrow \tau e$ 0.3 2.5	*	$B \rightarrow au e$ 0.3 2.5
	1	6.1	au ightarrow Ke 6.3 4.1	$K \to \pi \nu \bar{\nu}$ 5.8 × 10 ⁻⁴ 5.2	$\tau \rightarrow Ke$ 3.2 2.3	$\tau \rightarrow Ke$ 3.2 2.3	2.2	$K \rightarrow \pi \nu \bar{\nu}$ 1.5×10^{-4} 1.0
2	2	$\begin{array}{c c} \tau \rightarrow 3e \\ 5 \\ 10 \end{array}$	$\tau \rightarrow 3e$ 8 5.5	$\tau \rightarrow 3e$ 17 6.5	au ightarrow 3e 9 3.4	au ightarrow 3e 9 3.4	au ightarrow 3e 3 5.5	au ightarrow 3e 1.6 2.1
	3	*	$B \rightarrow \tau \bar{e} X$ 14 8.0	$B \to \tau \bar{e} X$ 14 7.7	$B \rightarrow \tau \bar{e} X$ 7.2 5.4	$B \rightarrow \tau \bar{e} X$ 7.2 5.4	*	$B \rightarrow \tau \bar{e} X$ 7.2 5.4
	1	*	$B ightarrow au ar{e}$ 0.6 7.9	$B ightarrow au ar{e}$ 0.6 7.3	V _{ub} 0.12 2.6	$B \rightarrow \tau \bar{e}$ 0.3 2.6	*	V _{ub} 0.12 2.6
3	2	*	$B \to \tau \bar{e} X$ 14 11	$B \rightarrow \tau \bar{e} X$ 14 10	$B \rightarrow \tau \bar{e} X$ 7.2 4.2	$B \rightarrow \tau \bar{e} X$ 7.2 4.2	*	$B \rightarrow \tau \bar{e} X$ 7.2 4.2
	3	*	au ightarrow 3e 8 15	$\tau \rightarrow 3e$ 17 14	$\begin{array}{c} \tau \rightarrow 3e \\ 9 \\ \hline 8.2 \end{array}$	au ightarrow 3e 9 8.2	*	au ightarrow 3e 1.6 8.2

At high masses
$$\sigma \propto \left(\frac{\lambda_{eq} \lambda_{lq}}{M^2}\right)^2$$

$$M \left(\frac{1}{M_{LQ}^2} \right)$$

- table shows 95% CL limits on $\lambda_{eq_{\alpha}}\lambda_{lq_{\beta}}/M_{LQ}^{2}$ for $eq_{a} \rightarrow \tau q_{\beta}$ in the case F=0
- limits from rare decays included for comparison
- ZEUS limit shown in third line
- 2.3 indicates best limit coming from ZEUS

Summary and Outlook

Backup Slides

• Introduce tform factors for non point-like electron and quark:

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} f_e^2(Q^2) f_q^2(Q^2) , \quad f_{e,q} = 1 - \frac{R_{e,q}^2}{6} Q^2$$

• Assume point-like electron: $f_e = 1$

ZEUS Search for $e^+p \rightarrow \mu X$ and $e^+p \rightarrow \tau X$: $M_{LQ} < \sqrt{s}$

$\mathbf{f}_{\mathbf{H}} = \mathbf{f}_{\mathbf{H}} =$

µ-channel

- one isolated $\boldsymbol{\mu}$
- p_t > 20 GeV
- no event found after final selection
- SM expectation: 0.86±0.15

- leptonic τ decays
- multivariate $\boldsymbol{\tau}$ id. for hadronic decays
- p_t^{miss} > 15 GeV || to τ in ϕ
- no event found after final selection
- SM expectation: 1.7±0.4