Supersymmetry at HERA

Chi Nhan Nguyen DESY / ZEUS Hamburg – Germany

32nd International Conference on High Energy Physics

16.-22. August Beijing, China

- RPV at HERA
- Squark Production in RPV SUSY General Search Bosonic Stop Decays Stop Production
- Superlight Gravitinos in RPV SUSY
- Summary and Outlook

R-Parity at HERA

• **RPV SUSY:** \Rightarrow Resonant Squark Production via s-channel with masses up to \sqrt{s}

• $R_p = (-1)^{3B+L+2S}$ multiplicative, discrete Symmetry: +1 (SM Particles) -1 (SUSY Particles) $W_{TD} = \lambda_{ii} h L_{ii} L_{ii} \bar{e}_{ih} +$

• Additional Terms in Superpotential:

$$V_{\mathcal{R}_{p}} = \underbrace{\lambda_{ijk} L_{i} L_{j} \bar{e}_{k}}_{\mathcal{V}} + \underbrace{\lambda_{ijk}' L_{i} Q_{j} \bar{d}_{k}}_{\mathcal{V}} + \underbrace{\lambda_{ijk}'' \bar{u}_{i} \bar{d}_{j} \bar{d}_{k}}_{\mathcal{V}} \dots$$

- allows Single Production of SUSY particles
- allows Decay of LSP (Lightest Supersymmetric Particle) to SM Particles
- HERA: Leading Order Diagrams proceed through 2. term
 ⇒ Resonant Production of SUSY Particles possible via
 iik

Search for Squark Production in RPV SUSY

Squark Masses up to \sqrt{s}

Narrow Width Approximation: $\begin{aligned} \sigma(e^+p \to \tilde{u}_L^j) \sim \lambda_{1jk}^{\prime 2} \cdot d^k(x = \frac{M_{\tilde{q}}^2}{s}) \\ \sigma(e^-p \to \tilde{d}_R^k) \sim \lambda_{1jk}^{\prime 2} \cdot u^j(x = \frac{M_{\tilde{q}}^2}{s}) \end{aligned}$

Electrons and Positrons probe different squarks and couplings Direct RPV decays (like scalar Leptoquark):

SUSY at HERA – C.N.Nguyen

ICHEP 2004 – Beijing, China August 17th **3**

Gauge Decays

• Gauge Decay of squarks: $\tilde{q} \to \tilde{\chi}_i^0 q \qquad \tilde{q} \to \tilde{\chi}_i^{\pm} q' \qquad \tilde{q} \to \tilde{q} q$ Subsequent Gaugino Decay via cascade: Large variety of final states multiple jets (Backg: NC DIS) e+/-+e-/+ "wrong sign" + multiple jets (Backg: bg-free!") (Backg: CC DIS) + multiple jets ν multiple jets (Backg: small contrib. from NC, CC) e(v) + l+ e^+ e^{i} u, dd $eq\bar{q}$ \tilde{u}_L^j \widetilde{d}_R^k λ'_{1j1} $\nu_e q \bar{q}$ λ'_{11k} $\chi^0_i, \chi^+_i, { ilde g}$ χ^0_i, \tilde{g} e^+ χ_1^0 χ_1^+ χ_1^0 $\prime q^{\prime}, l^+$ \bar{u} $\tilde{e}^{}$ λ'_{11k} \bar{q}, ν_l $\mathbf{J}k$

• In this Search: Almost full coverage of BR's (depend on parameters)

SUSY at HERA - C.N.Nguyen

Squark Production: lq-channel

- <u>H1, Data: 64.3 pb⁻¹ e⁺p</u>, 13.5 pb⁻¹ e⁻p
- <u>Selection</u>
 - Exclusive Selection for each channel
 - High Q2
 - <u>eq-channel:</u>
 - P_{T,e} > 16 GeV, isolated
 - <u>vq-channel:</u> P_{T,miss} > 30 GeV No Lepton p_T > 5 GeV found
- Resonance in M_{inv} (M_h) at Squark Mass expected for Signal - Resolution 3-6 (15) GeV
- Typical Efficiencies: 30-60%
- No "wrong sign electron" found

No deviaton from SM expectation

Search for Squark Production: Summary

	e^+p collisions		e^-p collisions		
Channel	Data	SM expectation	Data	SM expectation	Efficiency
eq	632	628 ± 46	204	192 ± 14	30 - 50%
u q			261	269 ± 21	40 - 60%
eMJ ("right" charge)	72	67.5 ± 9.5	20	17.9 ± 2.4	15 - 50 %
eMJ ("wrong" charge)	0	0.20 ± 0.14	0	0.06 ± 0.02	10 - 30%
eeMJ	0	0.91 ± 0.51	0	0.13 ± 0.03	15 - 45%
$e\mu MJ$	0	0.91 ± 0.38	0	0.20 ± 0.04	15 - 35%
νeMJ	0	0.74 ± 0.26	0	0.21 ± 0.07	15 - 40%
$\nu M J$	30	24.3 ± 3.6	12	10.1 ± 1.4	10 - 60 %
$ u \mu M J $	0	0.61 ± 0.12	0	0.16 ± 0.03	15 - 50%

Measurements in all Channels are compatible with SM

⇒ Calculation of Exclusion Limits

Squark Production: Constraints on MSSM

- **MSSM Parameter Scan:**
 - tan β = 6 ○ 70 GeV < M₂ < 350 GeV ○ -300 GeV < μ < 300 GeV ○ $M_{\tilde{i}}$ = 90 GeV
- Limits almost independent e-p: of SUSY Parameters
- Strongest bounds on λ' for 2. and 3. family squarks

•
$$\lambda'_{1j1} = 0.3 (\lambda'_{11k} = 0.3) \sim \sqrt{4 \pi}_{em}$$

 $M_{\tilde{q}} < 275 \ GeV (280 \ GeV)$

Squark Production: Constraints on mSUGRA

• mSUGRA Parameters:

- $\circ \tan \beta = 6$ $\circ \operatorname{sign}(\mu) = -1$ $\circ A_0 = 0$ $\circ \lambda'_{1jl} = 0.3 (\lambda'_{1lk} = 0.3) \sim \sqrt{4 \pi}_{em}$
- Limits follow squark isomass curves
- Medium tan β: HERA more sensitive then Tevatron
- $M_{\tilde{q}}$ up to ~280 GeV excluded

SUSY at HERA - C.N.Nguyen

ICHEP 2004 – Beijing, China August 17th 8

Bosonic Stop Decays in RPV SUSY

SUSY at HERA – C.N.Nguyen

ICHEP 2004 – Beijing, China August 17th 9

Bosonic Stop Decays: Mass Spectra

SUSY at HERA – C.N.Nguyen

Bosonic Stop Decays: Limits

- Bands: allowed cross section regions
- Probability for fluctuation of $jjjP_{T,miss}$ rates towards rates compatible with $j\mu P_{T,miss}$ cross section is ~1%
- ⇒ Isolated high P_T leptons cannot be interpreted as bosonic stop decays!
 - \rightarrow Constraining MSSM parameters

• <u>MSSM Parameter Scan:</u> • $\tan \beta = 10$ • $M_2 = 1000 \text{ GeV}$ • $400 < \mu < 1000 \text{ GeV}$ • $0.6 <_{\tilde{i}, \tilde{b}} < 1.2$ \Rightarrow Stop masses up to ~275 GeV excluded for • <u>Similar Results for</u> $\lambda'_{131} = 0.3$ $\tan \beta = 10 \text{ and}$ $M_2 = 400 \text{ GeV}$

Stop Production in RPV SUSY

Stop Production: Prelimnary Results

• **MSSM Parameter Scan:**

 $\circ \tan = 2, 5, 10$

- $O M_1 = 110 \text{ GeV}$
- \odot M₃ = 1 TeV
- $\circ |\mu| = 600,800,1000 \text{ GeV}$
- $M_{\tilde{t}\chi^+} = 10, 20, 30 \text{ GeV}$
- Results for each parameter point very similar for stop masses below ~200 GeV

 Limits on λ'₁₃₁ improved for stop masses below
 ~210 GeV

ZEUS

Superlight Gravitinos

• <u>GMSB</u>

Gravitino is LSP (< 1 GeV), NLSP: Neutralino, short lifetime 6 new Parameters:

- $\ \ \, \square \ \, \frac{1}{2} \ \,$
- **• F**₀: SUSY Breaking Scale, M(Gravitino) = $F_0/(\sqrt{3} M_P)$
- **M**: Mass of messenger particle **N**: Number of messenger particles
- <u>Neutralino production via t-channel selectron exchange</u>
 - ⇒ Independent of squark masses (strong constrains by Tevatron)
 - \Rightarrow Depend on selectron and neutralino masses (lower constrains by LEP)

• <u>Signature:</u> Isolated photon, jet and P_{T,miss}

Gravitinos: Event Selection

• <u>H1, Data: 64.3 pb⁻¹ e⁺p</u>, 13.5 pb⁻¹ e⁻p

Summary and Outlook

- <u>Squarks in RPV SUSY</u> has been searched in many decay channels
 - Using data >64 pb⁻¹ e⁺p and >13 pb⁻¹ e⁻p at \sqrt{s} = ~320 GeV
 - No deviation from SM found
 - \Rightarrow Significant constraints on MSSM and mSUGRA parameters
 - \Rightarrow Squark masses up to ~280 GeV excluded for $\lambda'_{1jk} = 0.3 (\sim \sqrt{4 \pi})$

 \Rightarrow Stop masses up to ~275 GeV excluded for $\lambda_{131} \stackrel{_{jn}}{=} 0.3$

- <u>Superlight Gravitinos in GMSB:</u>

 First time at HERA: Limits on λ'_{ijk} independent of squark masses
- <u>Prospects for HERA2:</u> • Polarised beams probe directly: $e_R^+ + d_L \rightarrow \tilde{u}_L, \tilde{c}_L, \tilde{t}_L$

 $e_R + u_L \to u_L, e_L, t_L$ $e_L - u_L \to \tilde{d}_R, \tilde{s}_R, \tilde{b}_R$

• Gravitinos:
 • H1 and ZEUS luminostiy:
 • 0.5 + 0.5 fb⁻¹, λ'_{1j1} = 0.5

H1 preliminary: e⁺p

