Charm Production at HERA-I and Heavy Flavours at HERA-II

John Loizides

Argonne National Laboratory & University College London ICHEP04, Beijing, 18^{th} August 2004

Open charm production in ep scattering

- Hard process
 - e.g. Boson-Gluon Fusion (BGF) $\gamma g \rightarrow c\overline{c}$
- Test pQCD, probe gluon in proton
 Parton shower development
- Final-State parton \rightarrow hadron transition
 - Hadronisation, Fragmentation
- Two kinematic regimes:

Deep Inelastic Scattering (DIS) $Q^2 > 1 \text{ GeV}^2$ Photoproduction (PHP) $Q^2 < 1 \text{ GeV}^2$

Theoretical Models for charm production at HERA

- - Next-to-Leading order (NLO) calculations: 'massive' scheme, fixed order NLO valid for $p_t \sim m_q$ (Frixione et al.) 'massless' scheme, re-summed NLL charm in γ or proton $p_t >> m_q$ (Kniehl et al.)
- Fragmentation: non-perturbative models
 e.g. Peterson fragmentation

Charm Tagging

0

0.14

0.15

0.16

 $M(K\pi\pi_{s}) - M(K\pi)$ (GeV)

Photoproduction of $D^{*\pm}$ mesons at HERA

- 'Massive' NLO calculation and 'Massless' NLO both fail in describing the shape.
- Theories have large uncertainties
- Measurements are able to constrain theories significantly

$D^{*\pm}$ Photoproduction Inclusive jet cross sections

Differential cross sections in DIS

Data in good agreement with NLO

calculations, down to low Q^2

- Theoretical uncertainties due to:
- Proton PDF
- charm mass
- renormalization/factorisation scale
- fragmentation
- Theoretical uncertainty larger than
 Experimental uncertainty

Inclusive $D^{*\pm}$ meson and Associated Dijet Production in DIS

- Inclusive D^{*±} meson production is well described by Rapgap and CCFM model CASCADE
- Discrepancy between models and with data.

Charm Contribution to proton structure function F_2

Extraction of (extrapolation to) $F_2^{c\overline{c}}$ The ratio $F_2^{c\overline{c}}/F_2$ rises from 10% to 30% as Q^2 increases and x decreases At low Q^2 errors are comparable to those from PDF fit \rightarrow use cross sections in future fits to additionally constrain the gluon density New H1 points at high Q^2 , (also $F_2^{b\overline{b}}$) \rightarrow see talk by A.Meyer

Charm Tagging Methods

D meson Production in **DIS**

Normalisation and shapes agree well with LO+PS (AROMA)

Total D meson in DIS cross sections

g12000 210000 D[±] Combination 00001 Combinati 0008 D0 8000 6000 • ZEUS (prel.) 99-00 - Gauss^{mod} + backg. • ZEUS (prel.) 98-00 6000 - Gauss^{mod} + backg. $1.5 < Q^2 < 1000 \text{ GeV}^2, 0.02 < y < 0.7$ 4000 $1.5 < Q^2 < 1000 \ GeV^2, \ 0.02 < y < 0.7$ 4000 $p_{T}(D^{\pm}) > 3 \text{ GeV}, |\eta(D^{\pm})| < 1.6$ $p_{T}(D^{0}) > 3 \text{ GeV}, |\eta(D^{0})| < 1.6$ 2000 $N(D^{\pm}) = 2247 \pm 273$ $N(D^0) = 10122 \pm 990$ 2000 0 2.1 M_{K≠} (GeV) 1.8 1.9 2.1 2 1.8 1.9 2 $M_{K\neq \neq}$ (GeV) ZEUS tion 1000 • ZEUS (prel.) 98-00 ZEUS Combin ---- Gauss^{mod} + backg. D_{s} Combinati 80 wrong charge 350 $1.5 < Q^2 < 1000 \text{ GeV}^2$ 0.02 < y < 0.7600 250 $p_{T}^{}(D^{^{*}}) > 3 ~GeV, ~|\eta(D^{^{*}})| < 1.6$ 200 400 $N(D^*) = 3218 \pm 75$ D* 7++¹++1 150 • ZEUS (prel.) 98-00 Gauss^{mod} + backg. 100 $1.5 < Q^2 < 1000 \text{ GeV}^2$, 0.02 < y < 0.7200 53-66-66 $p_T(D_s) > 3 \text{ GeV}, |\eta(D_s)| < 1.6$ N(D_s)= 578 ± 73 0.14 0.15 0.16 0.17 M_{K++}-M_{K+} (GeV) 2. M_{KK≠} (GeV)

ZEUS

ZEUS

	ZEUS	HVQDIS pQCD
$\sigma(e^{\pm}p \rightarrow e^{\pm}D^0X)$	$7.44 \pm 0.78^{+0.29}_{-0.49}$ nb	7.14nb
$\sigma(e^{\pm}p \rightarrow e^{\pm}D^{\pm}X)$	$2.42\pm0.30^{+0.21}_{-0.06}\text{nb}$	3.02nb
$\sigma(e^{\pm}p ightarrow e^{\pm}D_sX)$	$2.25\pm0.30^{+0.09}_{-0.33}$ nb	1.32nb
$\sigma(e^{\pm}p \rightarrow e^{\pm}D^{*\pm}X)$	$3.22\pm0.08^{+0.07}_{-0.05}$ nb	3.06nb

Fragmentation sensitive parameters,

 P_V , $R_{u/d}$ and γ_s are extracted

and compare favourably with

world averages.

Charm Fragmentation Fractions/Ratios

- Cross sections $D^{*\pm}, D^0, D^{\pm}, D_s$
 - \rightarrow fragmentation fractions.

	H1	ZEUS(prel.)	e^+e^-
$f(c \rightarrow D^+)$	0.203 ± 0.026	$0.249 \pm 0.014 ^{+0.004}_{-0.008}$	0.232 ± 0.018
$f(c \to D^0)$	0.560 ± 0.046	$0.557 \pm 0.019^{+0.005}_{-0.013}$	0.549 ± 0.026
$f(c \rightarrow D_s^+)$	0.151 ± 0.055	$0.107 \pm 0.009^{+0.005}_{-0.005}$	0.101 ± 0.027
$f(c \rightarrow D^{*+})$	0.263 ± 0.032	$0.223 \pm 0.009^{+0.003}_{-0.005}$	0.235 ± 0.010
$f(c \rightarrow \Lambda_c^+)$		$0.076 \pm 0.020^{+0.017}_{-0.001}$	0.076 ± 0.007

Charm fragmentation fractions are universal

D meson Tagging at HERA II

First Look at HERA II Data

Beauty tagging via impact parameter Semi-leptonic muon decays of beauty quarks Collecting new quality data, New detectors working well!

 \rightarrow more on HERA beauty production see A.Meyers talk

Summary & Outlook

- Charm cross sections measured are generally well described pQCD.
 - \rightarrow charm cross sections well understood
- Charm PHP and jets showing the need for 'massless' calculations
 - \rightarrow future scope to be included in PDF fits
- Experimental errors typically smaller then theoretical uncertainties
 → more theoretical developments needed.
- Fragmentation fractions measured in γp and DIS \rightarrow competitive precision Evidence that charm fragmentation is universal in e^+e^- and ep
- HERA II → will provide more precise measurements with increased luminosity, improved instrumentation.
- First look at new Data with improved instrumentation shows that lifetime tagging with new ZEUS vertex detector works as expected.

Expect a lot more charm from HERA II

First Look at HERA II Data

ZEUS beauty candidate event 2 Jets and 2 associated muons Impact parameters relative to the beam spot of 250 and 330 μm

