Measurements of Proton Structure Functions at low Q^2 at HERA

Victor Lendermann University of Heidelberg H1 Collaboration

- Deep Inelastic Scattering at HERA
- Measurements of F₂ in shifted vertex and radiative events
- Extraction of F_L

Beijing, 16.08.2004

Inclusive Deep Inelastic Scattering to Study Proton Structure

Neutral Current

2 degrees of freedom at fixed $s = (l+p)^2$ cms energy boson virtuality $Q^2 = -(l - l')^2$ (resolution scale)

fractional momentum of struck quark

 $x = \frac{Q^2}{2p \cdot q}$

Additional useful variables

inelasticity

$$\mathbf{y} = \frac{p \cdot q}{p \cdot l} \approx \frac{Q^2}{xs}$$

invariant mass of hadronic final state

$$\mathbf{W} = \sqrt{Q^2 \frac{1-x}{x} + m_p^2}$$

Structure Functions in DIS

• Measure cross section

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{Q^4x} \left\{ \left[1 + (1-y)^2 \right] F_2(x,Q^2) - y^2 F_L(x,Q^2) + \dots xF_3 \right\}$$

at high Q²

• Parton distribution functions (PDF) in pQCD

$$F_2^{\text{em}}(x, Q^2) = x \sum_i e_i^2 [q_i(x, Q^2) + \bar{q}_i(x, Q^2)]$$

 q_i – probability to find quark with flavour *i* in proton

- $F_L(x, Q^2)$ longitudinally polarised photons
 - Contribution only at high y
 - Sensitive to QCD higher orders (gluon emission) $F_L \sim \alpha_s g$ — constrains gluon density

Experimental Technique at Low Q^2

$Q^2 \propto p_{t,e}^2$

- ► Low Q^2 low θ_e in DIS Standard DIS in main detector: $Q^2 \gtrsim 2 \text{ GeV}^2$ \longrightarrow experimental challenge
- ► Approaches
 - Very low Q² devices ZEUS BPC/BPT
 - Shifted vertex runs
 - Radiative events

Previous Results at Low Q^2

Photon Radiation from Lepton Line

q = l - l' - kModified kinematics Access lower Q² and higher x

Distinct topologies:

- Initial State Radiation (ISR) : $\vec{k} \parallel \vec{l}$
- Final State Radiation (FSR) : $\vec{k} \parallel \vec{l'}$
- QED Compton (QEDC) : $\vec{q} \parallel \vec{l}$

Untagged ISR Signature

 $\sum (E - P_z)_i < 2E_{e-\text{beam}}$

 γp background rejected by BST

F_2 in Shifted Vertex ISR

Equivalent to inclusive DIS at reduced *s*

$$Q^2 = xys$$

Access higher x

Improved Extraction of $\lambda(Q^2)$

 $\lambda = \frac{\partial \ln F_2}{\partial \ln x}$

- Rise of F_2 at $x < 10^{-2}$ is well parameterised by $F_2 = c(Q^2) \cdot x^{-\lambda(Q^2)}$
- At $Q^2 \gtrsim 3 \,\text{GeV}^2$: $\lambda \sim \ln Q^2$, $c \sim \text{const}$ Partonic degrees of freedom
- ► At $Q^2 \lesssim 2 \,\text{GeV}^2$: $\lambda(Q^2) \to 0.08$

Transition to hadronic degrees of freedom

Inelastic QED Compton Events

DIS background at low *x*: π^0 fakes γ

Medium - high x are measured

Understanding of HFS at low WUse SOPHIA MC model

Kinematic Region of QEDC Measurement

Results of F_2 Measurement in QEDC

Determination of F_L

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{Q^4x} \left\{ \left[1 + (1-y)^2 \right] F_2(x,Q^2) - y^2 F_L(x,Q^2) \right\}$$

- Data sensitive at highest y only
- Direct measurement requires data at different $s \longrightarrow lower E_p runs$

- Indirect determination extrapolating F_2 to higher y $F_L \propto F_2 - \sigma_r$
 - derivative method
 - shape method

$$\sigma_{\rm fit} = cx^{-\lambda} - \frac{y^2}{1 + (1-y)^2}F_L$$

Shape Method vs. Derivative Method

F_L at Fixed y = 0.75

Summary of New Results by H1

New approaches to proton structure function measurements at low Q^2 in transition region from DIS to γp

- ► $F_2(x, Q^2)$ in QED Compton scattering at $Q^2 \rightarrow 0.1 \,\text{GeV}^2$ and $0.001 \leq x \leq 0.1$
 - Extended low Q^2 domain of HERA towards higher x
 - Better HFS modelling at low W
 - Good agreement with fixed target data
- ▶ Preliminary: $F_2(x, Q^2)$ using shiftex vertex untagged ISR at $0.35 < Q^2 < 0.85 \,\text{GeV}^2$ and $10^{-4} \leq x \leq 5 \cdot 10^{-3}$
 - Extended SV domain towards higher *x*
 - Improved extraction of $\lambda(Q^2)$
- Preliminary: $F_L(Q^2)$ at W = 276 GeV:
 - Derivative method
 - Shape method more precise

Additional Information

x Dependence of F_2 at Low Q^2

If unitarisation effects present, expect taming of rise of F₂ at low x
Extract λ = ∂ln F₂/∂ln x at fixed Q²
Derivative independent of x for x < 10⁻² no evidence for saturation

Combined Extraction of λ

ISR Event in H1 Detector

Access lower Q^2

- Additional experimental challenges
 - Detector acceptance and calibration
 - Backgrounds from event overlaps (DIS + BH, γp + BH, ISR + BH)

Preliminary Results: F_2 in ISR.

Access both perturbative and non-perturbative domain

Direct Determination of F_L

Modified kinematics:

interpret as incident $E = E_{e-\text{beam}} - E_{\gamma} \implies \text{variation of } y$:

