Xavier Janssen - DESY Hamburg

On behalf of H1 and ZEUS Collaborations

Diffractive Photoproduction of Vector Mesons and Photons at High |t|

32nd International Conference on High Energy Physics

Beijing, China, 16-22 August, 2004

High |t| Diffractive Vector Meson Production

$e + p \rightarrow e + VM (= \rho, \phi, J/\psi, ...) + Y$

- Photon Virtuality Photoproduction: $Q^2 \sim 0$
- $\gamma p \ \mathsf{CMS} \ \mathsf{energy}$
- 4-momentum transfer squared

Momentum fraction of the colour singlet exchange

 Hard Scales for pQCD in Photoproduction: M_{J/ψ}, t
 → Study nature of the Diffractive Exchange at high |t|

 High W (i.e. small x_{Bj}) → BFKL contributions expected

Diffractive VM Production in pQCD

LO: 2 gluon exchange

LLA: Gluon ladder

DGLAP Evolution ($|t| < M_{VM}^2$):

Strong k_T ordering along ladder

 \rightarrow No increase of $d\sigma/dt$ with W

BFKL Evolution (small x_{Bj}):

No k_T ordering in ladder

 $\rightarrow d\sigma/dt \sim |t|^{-n}$

- \rightarrow Increase of $d\sigma/dt$ with W
- \rightarrow Little shrinkage $d\sigma/dW \propto W^{4(\alpha_{\rm P}(t)-1)}$
- → S-channel helicity conservation
 ↔ Meson Wave Fct

(Equal long. momentum sharing)

Diffractive Photoproduction of J/ψ at high |t|

Backgrounds: $\gamma \gamma \rightarrow e^+ + e^-, \mu^+ + \mu^-$ and $\Psi(2S)$

• Fit
$$\sigma \propto W^{\delta}$$
; $\delta = 4(\alpha_{I\!\!P}(t) - 1)$
 $\alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha' t$

 $\alpha_{I\!\!P}(0) = 1.167 \pm 0.048 \pm 0.024$

 $\alpha' = -0.0135 \pm 0.0074 \pm 0.0051 \text{ GeV}^{-2}$

 \longrightarrow No Shrinkage at Hight |t|

Same as for ZEUS

 ρ and ϕ results:

ZEUS

• Fit $\sigma \propto W^{\delta}$; $\delta = 4(\alpha_{I\!\!P}(t) - 1)$ $\alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha' t$

 $\alpha_{I\!\!P}(0) = 1.167 \pm 0.048 \pm 0.024$

 $\alpha' = -0.0135 \pm 0.0074 \pm 0.0051 \text{ GeV}^{-2}$

 \longrightarrow No Shrinkage at Hight |t|

Predicted by BFKL models

Fit
$$\sigma \propto W^{\delta}$$
; $\delta = 4(\alpha_{I\!\!P}(t) - 1)$
 $\alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha' t$

 $\alpha_{I\!\!P}(0) = 1.167 \pm 0.048 \pm 0.024$

 $\alpha' = -0.0135 \pm 0.0074 \pm 0.0051 \text{ GeV}^{-2}$

- \rightarrow No Shrinkage at Hight |t|Predicted by BFKL models
- BFKL (fixed α_s) describes data reasonably
- DGLAP works only at low |t|

ZEUS data 1996-97 $\int \mathcal{L} = 36 \, \mathrm{pb}^{-1}$

 $\begin{array}{l} 80 < W < 180 \; {\rm GeV} \\ 185 < W < 245 \; {\rm GeV} \end{array}$

 $Q^2 < 0.02 \; {\rm GeV^2}$

 $|t| < 7 \,\mathrm{GeV}^2$

- Cross-Section Increase with W
- Steep *t*-dependence $\propto |t|^{-n}$ $n = 1.7 \pm 0.2 \pm 0.3$
- BFKL model (tuned for W = 100 GeV) reproduces qualitatively the increase with W
- DGLAP model:
 → no W dependence

Spin Density Matrix Elements

Expect r_{00}^{04} , $\operatorname{Re}\{r_{10}^{04}\}$, $r_{1-1}^{04} = 0$

Spin Density Matrix Elements

Diffractive High P_T Photons

$e+p \rightarrow e+\gamma+p$

- Photoproduction $Q^2 < 0.01 \ {\rm GeV^2}$
- No Vector Meson wavefunction
- Large rapidity gap: $\Delta \eta \simeq \log(\hat{s}/p_{t(\gamma)}^2)$
 - \longrightarrow large \hat{s} accessible
 - \rightarrow BFKL LL approximation:

• Steep rise at small $x_{I\!P}$: $d\sigma/dx_{I\!P} \sim 1/W^2 (1/x_{I\!P})^{2(1+\omega_0)}$ $\omega_0 = (3\alpha_s/\pi)4\ln 2$ • $\alpha_s = 0.15 - 0.17$

First Measurement of High P_T Photons

H1 data 1999-2000 $\int \mathcal{L} = 40 \, \mathrm{pb}^{-1}$ 175 < W < 247 GeV $Q^2 < 0.01 \, \mathrm{GeV}^2$ $p_{t(\gamma)} > 2 \, \mathrm{GeV}$

Cross section basically described by BFKL LL ($\alpha_s = 0.15 - 0.17$) (J/ψ : $\alpha_s = 0.18$ Rapidity gaps between Jets : $\alpha_s = 0.18$)

CONCLUSION

Diffractive Vector Meson Production at High |t|:

- Data extend to large values of |t|
- *t*-dependence: $\propto |t|^{-n}$
- Steep rise of Cross-Sections with W
- Low or no shrinkage at high |t| : $\alpha' \sim 0 \ {\rm GeV^{-2}}$
- BFKL model with fixed α_s describes the data quite well in contrast to DGLAP predictions

Diffractive High P_T Photons Production:

- First measurment of this proces
- BFKL model describe basic feature of the data