QCD Analyses of HERA cross section data - Determination of the proton PDFs and $\alpha_{\rm s}$ -

32nd International Conference on High Energy Physics

> Beijing, China August 16th-22nd 2004

Claire Gwenlan University of Oxford

On behalf of the H1 and ZEUS Collaborations Abstracts: 5-0263 and 5-0150

Deep Inelastic Scattering at HERA

Inclusive lepton-proton cross sections:

$$\frac{d^{2}\sigma_{NC}(e^{\pm}p)}{dxdQ^{2}} \sim Y_{+}F_{2} - y^{2}F_{L} \mp Y_{-}xF_{3} \qquad \underline{k}$$

$$\frac{d^{2}\sigma_{CC}(e^{\pm}p)}{dxdQ^{2}} \sim Y_{+}F_{2}^{CC} - y^{2} F_{L}^{CC} \mp Y_{-}xF_{3}^{CC}$$

$$STRUCTURE FUNCTIONS: \qquad \underline{F_{2}} \sim \sum x(q_{i} + \overline{q}_{i}) \text{ Dominates}$$

$$xF_{3} \sim \sum x(q_{i} - \overline{q}_{i}) \text{ High } Q^{2}$$

 $F_1 \sim \alpha_s xg(x,Q^2)$ High y

 x = momentum fraction of proton carried by quark (HERA: 10⁻⁶ ~ 1)
 Q² = "resolving power" of probe

Хþ

 θ_e

Factorisation: structure function = short range interaction \otimes PDFs

Now, after the HERA I phase (1994-2000) of data-taking, the full set of e⁺ and e⁻ inclusive Neutral Current (NC) and Charged Current (CC) cross sections are available for QCD analysis

HERA Kinematic (x,Q²) Range

- HERA data covers a large region in (x,Q²)
 - \rightarrow Also in relevant x-region for LHC physics

C.Gwenlan, QCD Analyses at HERA, ICHEP04

Neutral Current Processes

x=0.4

x=0.65

 10^{5}

Charged Current Processes

- Reduced cross sections: $\tilde{\sigma}_{CC}^{+} = x [\overline{\upsilon} + \overline{c} + (1-y)^{2}(d+s)]$ $\tilde{\sigma}_{CC}^{-} = x [\upsilon + c + (1-y)^{2}(\overline{d} + \overline{s})]$
- Both e⁺ and e⁻ needed for flavour separation in QCD fits

Typical systematic uncertainties are ~ 6%

HERA Charged Current * H1 eⁱp * H1 eⁱp 94-00 - SM eⁱp (CTEQ6D) : ZEUS eⁱp 98-99 : ZEUS eⁱp 99-00 - SM eⁱp (CTEQ6D) $Q^2 = 280 \text{ GeV}^2$ $Q^2 = 530 \text{ GeV}^2$ $Q^2 = 950 \text{ GeV}^2$ 1

5

Х

Global versus HERA Only QCD Analyses

Where does the information come from in a global fit (colliding beam + fixed target DIS) compared to a HERA only fit ?

	Global	HERA Only
Valence	Predominantly fixed target data (v-Fe and $\mu D/\mu p$)	High Q ² NC/CC e [±] cross sections
Sea	Low-x from NC DIS High-x from fixed target Flavour from fixed target	Low-x from NC DIS High-x ? Flavour ?
Gluon	Low-x from HERA dF ₂ /dlnQ ² High-x from momentum sum	Low-x from HERA dF ₂ /dlnQ ² High-x from momentum sum

ANALYSES FROM HERA ONLY ...

- Systematics well understood
 - measurements from our own experiments !!!
- No complications from heavy target Fe or D corrections

PDF Parameterisation

Conventional QCD predicts only the Q² dependence of PDFs

- Parameterise PDFs in x at (low) starting scale Q_0^2 :
 - $xf(x) = Ax^{b}(1-x)^{c}P(x) \leftarrow P(x)$ should be both flexible and stable

Low-x behaviour high-x suppression

- Evolve PDFs with Q² using NLO DGLAP equations
- Convolute PDFs with coefficient functions to give predictions for structure functions (and hence cross sections)
- Parameters A, b, c, ... optimised in fit for each PDF

NOTE: Some params. constrained by momentum and no. sum rules

 \sum mom. = 1 $\int u_v dx = 2$ $\int d_v dx = 1$

<u>model assumptions</u>: form of parameterisation, starting scale Q_0^2 , treatment of heavy quarks, sea flavour composition, cuts on data etc. \rightarrow should be reflected in the PDF uncertainty

H1 PDF 2000 QCD Analysis

H1 inclusive Neutral and Charged Current 94-00 cross sections (Eur. Phys. J. C30 (2003), 1; hep-ex/0304003)

- Data span: 8 10⁻⁵< x < 0.65, 1.5 < Q² < 30000 GeV² (621 points)
 - Cuts on data included in fit, $Q^2 > 3.5 \text{ GeV}2$
- Parameterisation at $Q_0^2 = 4 \text{ GeV}^2$:
 - $xf(x) = A x^{b} (1-x)^{c} (1+ex+fx^{2}+gx^{3}+...)$
- Choose to parameterise: xU=x(u+c), xD = x(d+s), $x\overline{U}$, $x\overline{D}$, $x\overline{D}$, xg
 - Valence not fitted directly
- Parameterise <u>each</u> PDF by searching for χ^2 saturation
- Perform fit in ZERO MASS scheme (appropriate for high Q²)
- Use H1+BCDMS p and D data as a cross-check

H1 PDF 2000 QCD Analysis

10 free parameters: $xU(x) = A_U x^{b_U} (1-x)^{c_U} (1+e_U x+g_U x^3)$ $xD(x) = A_D x^{b_D} (1-x)^{c_D} (1+e_D x)$ $x\overline{U}(x) = A_{\overline{U}} x^{b_{\overline{U}}} (1-x)^{c_{\overline{U}}}$ $x\overline{D}(x) = A_{\overline{D}} x^{b_{\overline{D}}} (1-x)^{c_{\overline{D}}}$ $xg(x) = A_g x^{b_g} (1-x)^{c_g} (1+e_g x)$

- Yellow band shows model uncert. with contributions from variation of:
 - input scale Q₀²
 - minimum Q² cut
 - charm and strange fraction
 - quark masses
 - value of α_s
- Including precise BCDMS data yields consistent PDFs

largest contribution to model uncertainty on gluon arises from variation of α_{s}

H1 PDF 2000 QCD Analysis

- Fit provides tight constraint on xU and xD:
 - \rightarrow u-type quark precision:
 - 1% for x=0.001
 - 7% for x=0.65
 - \rightarrow d-type quark precision:
 - 2% for x=0.001
 - 30% for x=0.65

Look forward to higher luminosity for high-x region \rightarrow HERA II data already here!

 Strong rise in gluon (and sea) as Q² increases

H1 Gluon and α_s Determination

- Perform dedicated QCD analysis to determine gluon density and α_s
- Use precise H1 and BCDMS-p F_2 data to constrain valence region

- Proton targets only \Rightarrow no nuclear correction required

- Parameterisaton:
 - $xf(x) = Ax^{b}(1-x)^{c}(1+d\sqrt{x+ex+fx})$

Model uncertainty evaluation only -

- Choose to parameterise:
 - xg
 - $xV = 9/4u_v + 3/2d_v$
 - $xA = u + 1/4(u_v + 2d_v)$

with $F_2 = 1/3xV + 11/9xA$

- Use massive 3-flavour number scheme
- Extracted value of $\alpha_s(M_Z)$:

 $\alpha_{s}(M_{z}) = 0.1150 \pm 0.0017(exp.)_{-0.0007}^{+0.0009}$ (model) with scale uncertainty of 0.005

-M Ch • • Use

C.Gwenlan, QCD Analyses at HERA, ICHEP04

11

ZEUS Only QCD Analyses

Inclusive Neutral and Charged Current 94-00 cross sections (contributed paper to ICHEP04, abstract: 5-0263)

- Data span 6.3 10⁻⁵ < x < 0.65, 2.7 < Q² < 30000 GeV² (507 points)
 - Cuts on data included in fit, $W^2 > 20 \text{ GeV}^2$ (removes higher twist)
- Parameterisation at $Q_0^2 = 7 GeV^2$:
 - $xf(x) = A x^{b} (1-x)^{c} (1+ex) \leftarrow no \chi^{2} advantage in more terms$
- Choose to parameterise xu_v , xd_v , xS (sea), xg, $x\Delta=x(\overline{d}-\overline{u})$
 - fix A_{Δ} consistent with Gottfried sum rule (no sens. in HERA data)
- Perform fit in Roberts-Thorne Variable Flavour No. scheme

Compared to global fits, information lost on high-x sea and gluon:

 \rightarrow Use ZEUS global fit to constrain high-x sea and gluon (c_s & c_g)

ZEUS Only QCD Fit: Sea and Gluon

- Blue hatched band represents model uncertainties with contributions from varying:
 - Starting scale Q_0^2
 - Form of parameterisation
 - Values of c_g and c_s
- Compatible with global fits (see later)
 - → low-x information comes from HERA data anyway

ZEUS Only QCD Fit: Valence

- Information in HERA Only fits from high Q² NC/CC data
 - → Comparable to global fit BUT now more potential for improvement

14

- now use proton target data only (particularly important for d_v)
 - Uncertainties are statistics dominated \rightarrow improvement from HERA II

ZEUS JETS QCD Analysis

Inclusive Neutral and Charged current cross sections + JET DATA

Jet cross sections directly sensitive to gluon through Boson-Gluon-Fusion process \rightarrow

• sensitivity of included data: x ~ 0.01-0.1

Two data-sets from 96-97 (~40pb⁻¹): 1. Inclusive jet DIS data ($Q^2 > 125 \text{ GeV}^2$ 2. Two-jet γp ($Q^2 \sim 0 \text{ GeV}^2$, $E_T > 14,11 \text{ GeV}$)

DIS: $Q^2 >> 1 \text{ GeV}^2$ $\gamma p: Q^2 \sim 0 \text{ GeV}^2$

• Same assumptions/parameterisation as ZEUS Only EXCEPT: — now have direct information on gluon \Rightarrow retain all of b_g, c_g and e_g free

Addition of Jet Data: The Method

A full NLO calculation for jet cross sections, for each iteration of the χ^2 minimisation, would be prohibitively slow

- 1. Use NLO QCD program <u>initially</u>, to produce grid of weights in (x, μ_F^2) , giving perturbatively calculable part of cross section
- 2. Convolute with PDFs to produce fast prediction for cross section:

$$\sigma = \sum_{\alpha=g,q,\bar{q}} \int dx \, \alpha_s^n(\mu_R) \, C_{\alpha,n}(x,\mu_F^2) \, f_\alpha(x,\mu_F^2) \times (1 + \delta_{had})$$

 $c_{a,n}$ = weight ; f_a = PDF of parton a ; (1+ δ_{had}) = hadronisation correction

Grid cross sections reproduce real NLO predictions to better than 0.5%

Gluon Distribution

$$xg(x) = A_g x^{b_g} (1-x)^{c_g} (1+e_g x)$$

- Compare to equivalent fit without jet data
 - → Significant improvement in determination of gluon at mid-to-high-x
 - persists to high scales

ZEUS-JETS versus Other PDFs

ZEUS-JETS: χ^2 /ndf = 0.83

• Compatible with other fits given different data and fitting schemes

giv

Extraction of α_s from ZEUS-JETS Fit

 Extra information on gluon allows a competitive determination of α_s using only HERA data ⇒ treat α_s as free parameter in fit → leads to larger uncertainty on gluon (represented by blue band)

SOURCES OF UNCERTAINTY ON $\alpha_{\rm s}$		
uncorr:	Statistical and uncorrelated systematic uncertainties	
corr:	Correlated systematics	
model:	Model uncertainties	

 $\alpha_{s}(M_{z}) = 0.1183 \pm 0.0007(\text{uncorr.}) \pm 0.0027(\text{corr.}) \pm 0.0008(\text{model})$

— additional scale uncertainty: 0.005

Summary of HERA α_s Measurements

.

th. uncert.

0.1

Three competitive extractions of $\alpha_s(M_7)$ from HERA QCD fits \rightarrow H1+ BCDMS

- \rightarrow 7FUS-JFTS
- \rightarrow ZEUS Global (not discussed here)

QCD Fit	$\alpha_{s}(M_{Z})$
H1+BCDMS	0.1150 ± 0.0017(exp.) ^{+0.0009} (model)
ZEUS-JETS	0.1183±0.0028(exp.)±0.0008(model)
ZEUS Global	0.1166±0.0049(exp.)±0.0018(model)

- Limiting factor in the precision are the scale uncertainties (~0.004-0.005)
 - \rightarrow NNLO analyses are expected to significantly reduce these

20

Summary and Outlook

• Proton PDFs extracted by H1 and ZEUS using <u>HERA data alone</u>

- Using only pure proton target data avoids uncertainties due to heavy target corrections (particularly important for d-valence)
- Uncertainties arising from combining systematics from different experiments are reduced in HERA Only fits
- Jet data have been added in an independent ZEUS QCD fit
 - Significant improvement to constraint of gluon at mid-to-high-x
- Precise extractions of α_s from HERA QCD analyses
- Look forward to HERA II data for:
 - more precise valence (xF_3 from NC/ flavours from CC)
 - more precise high-x sea
 - LOW ENERGY RUNNING AT HERA II ? For higher-x and for gluon (F_L)

ZEUS-JETS: Comparison with Data

23

Full ZEUS-JETS Fit Gluon Summary

PDF Determination in QCD Analyses

 Provided the structure of the electroweak interaction is well understood, perturbative QCD can be used to extract <u>parton</u> <u>densities</u> (or any other parameter entering the cross section e.g. α_s) using QCD evolution

Now, after the HERA I phase (1994-2000) of data-taking, the full set of e⁺ and e⁻ inclusive Neutral Current (NC) and Charged Current (CC) cross sections are available for QCD analysis

HERA II results already here \rightarrow to be used in future QCD analyses

H1 PDF 2000 versus Global Fits

C.Gwenlan, QCD Analyses at HERA, ICHEP04

H1PDF 2000: χ²/ndf=0.88

- Reasonable agreement between fits given the different data and fitting schemes
- CTEQ generally lies between H1 PDF 2000 and the ZEUS global fit