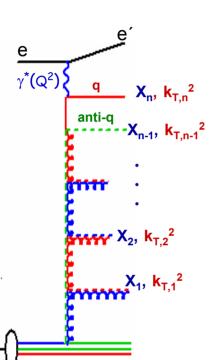


Forward Jet/ π^0 Production in DIS at HERA

On behalf of the
H1 and ZEUS Collaborations
ICHEP August 2004, Beijing
Didar Dobur, University of Freiburg

Outline

- *QCD Dynamics at low x
 - MC Models
- *Inclusive Forward Jet Measurements from ZEUS and H1
 - Forward π^0 Measurements from H1
 - Di-Jet Measurement from H1
 - Conclusions



QCD Dynamics at low x

Jet/particle production have been successfully described by DGLAP at high scales (Q2)

* <u>DGLAP</u>(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) only terms proportional to (InQ²)ⁿ are kept and summed.

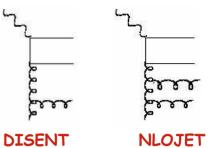
$$\alpha_s(Q^2)\ln(Q^2), \ \alpha_s(Q^2)\ln\frac{1}{x}\approx 1$$
 strong k_T ordering

- → DGLAP is expected to break down at low scales and low x
- → This break down might be observed in forward jet/particle production at HERA

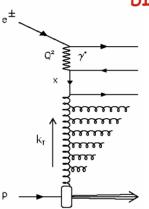
Alternative approaches to explain parton dynamics at low x;

* BFKL(Balitsky-Fadin-Kuraev-Lipatov) provides an evolution in x at fixed Q^2 by ignoring terms which includes Q^2

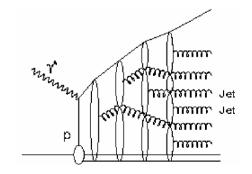
$$\alpha_s(Q^2) \ln(Q^2) \approx 1$$
, $\alpha_s(Q^2) \ln \frac{1}{x}$ no k_T ordering, but x
Applicable at very low-x


- * <u>CCFM</u>(Ciafaloni-Catani-Fiorani-Marchesini) gives an evolution in both Q² and approaches BFKL at low \times and DGLAP at high Q², angular orderin
- * DGLAP+Resolved Photon; parton cascade from γ side

QCD Calculations and MC Models



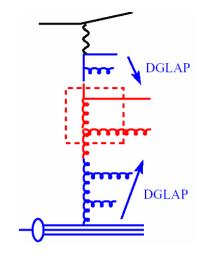
DISENT/NLOJET: Fixed order QCD partonic cross section, on mass shell ME + DGLAP


RAPGAP/LEPTO: LO ME+PS, (DGLAP)

→ Strong ordering in k_T

ARIADNE: LO, an implementation of Color Dipole Model (CDM)

- → Independently radiating dipoles formed by emitted gluons
- \rightarrow Random walk in k_T
- → BFKL-like



MC Models

RAPGAP Res- γ : LO, RAPGAP with an additional DGLAP evolution starting from γ

 \rightarrow Contributes when $E_T^2 > Q^2$

CASCADE: LO off mass shell ME + PS based on k_{T} factorized CCFM evolution model

→ angular ordering in parton emission

All MC models described here use LUND string fragmentation scheme for hadronization!

Inclusive Fwrd Jet measurements from ZEUS

Measurement-1

Measurement-2

Kinematical range

No restriction

98-00 Data, $L \cong 82 \text{ pb}^{-1}$

$$0.0004 < x_{Bi} < 0.005$$

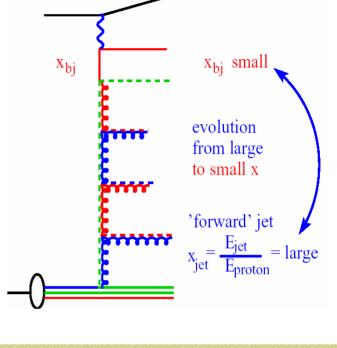
Forward Jet selection

Jet Finding with Inclusive K_{T} Algorithm in Lab Frame

No restriction

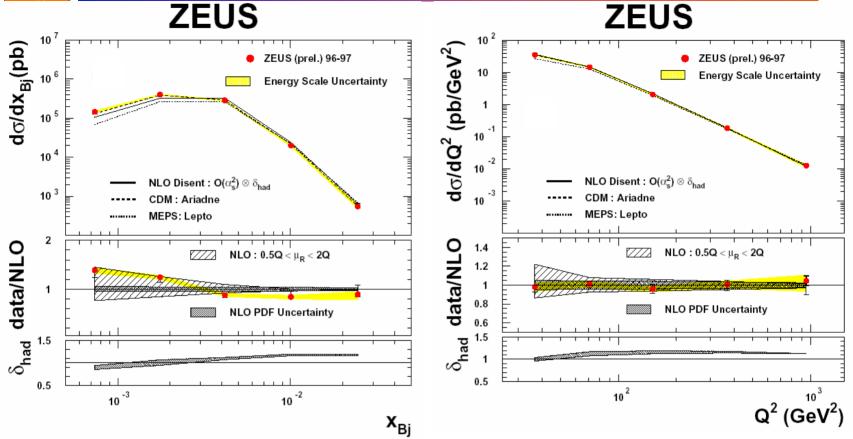
$$0.5 < E^2_{T,iet}/Q^2 < 2$$

 $\cos \gamma_{had} < 0$ Suppresses QPM


Jet Finding with Inclusive K_™ Algorithm in Breit Frame

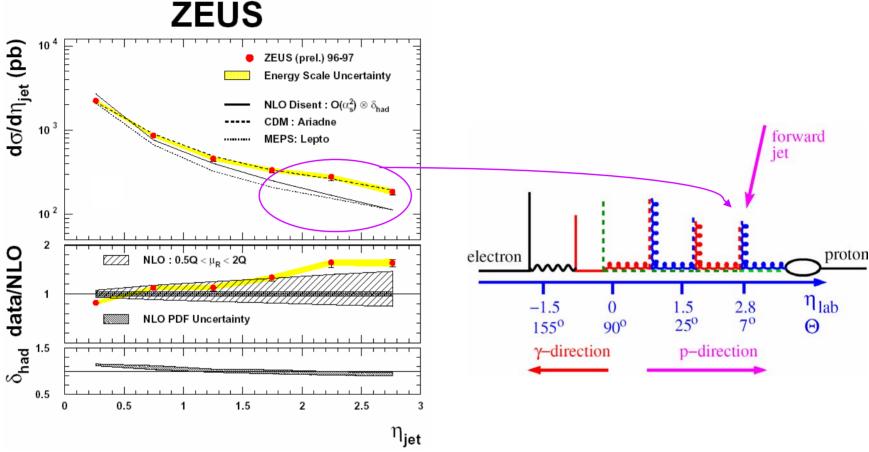
$$x_{iet} > 0.036$$

$$x_{jet} > 0.036$$
 $x_{jet} = E_{jet}/E_{proton} >> x_{Bj}$ enhances BFKL effe


$$0.5 < E^2_{T,jet}/Q^2 < 2$$

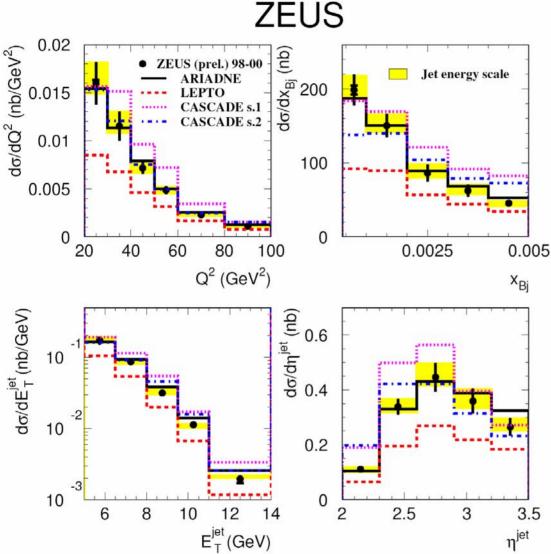
$$0.5 < E^2_{T,jet}/Q^2 < 2$$
 $E^2_{T,jet} \sim Q^2$ suppress DGLAP evolution

Forward Jet (event) Cross Sections (ZEUS-1)



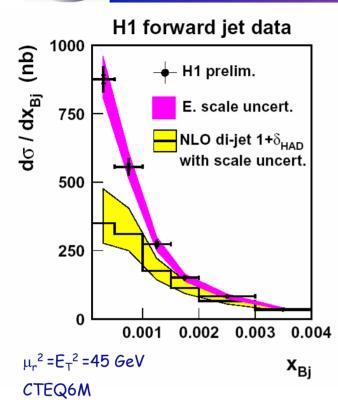
NLO calculations with $\mu_{r}^{\ 2}$ =Q² , corrected to hadron level

- \triangleright NLO predictions lower than data at low x_{Bj} but still within the theoretical uncertaintie Gives a good description of Q² dependence
- > CDM describes both measured cross sections
- ightharpoonup ME+PS:LEPTO (DGLAP) fails for low x_{Bj} and Q^2

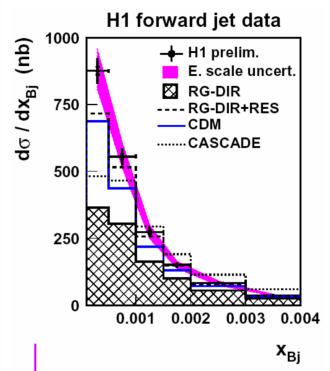

Inclusive Forward Jet Cross Sections (ZEUS-1)

- > Discrepancy between data and NLO in the forward region η^{jet} >1.5, this region is more sensitive to higher order radiations (estimation of uncertainty from higher orders is large)
- > CDM describes well measured cross section
- > ME+PS:LEPTO (DGLAP) fails in all ηjet range

Inclusive Forward Jet Cross Sections (ZEUS-2)



Look more forward region 2< njet<3.5


- > DGLAP underestimates data by a factor of 2
- > CCFM set1 disagrees with all cross sections
- > CCFM set2 in a good agreement with data in Q^2 and E_T but fails to reproduce the shapes of x_{Ri} and η^{jet}
- > CDM gives a good description of data in all measured cross sections

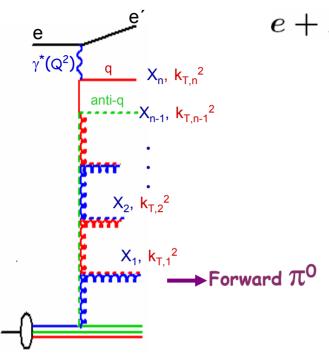
Forward Jet Measurement from H1

- >Strong increasing of data as x_{Bj} decreases
- ightharpoonup NLO calculations fail at low- x_{Bj} region (as ZEUS)

97 Data , L= 13.72 pb⁻¹ <u>Kinematical range</u>

 $5 < Q^2 < 85 \text{ GeV}^2$ $10^{-4} < x_{Bj} < 4.10^{-3}$ 0.1 < y < 0.7

Jet selection


Inclusive K_T Algorithm i Breit Frame

$$x_{jet}>0.035$$

 $0.5 < E^2_{T,jet}/Q^2 < 5$
 $P_{T,jet}>3.5 GeV$
 $7^{\circ} < \theta_{jet} < 20^{\circ}$

- > DGLAP is similar to NLO
- \triangleright DGLAP with res- γ is closest to data
- > CDM gives a reasonable description for higher x
- \triangleright CCFM does not describe the shape of x dependence

❖More high E_T QCD radiation is needed in the low-x region

Forward π^0 Measurement from H1 Experiment

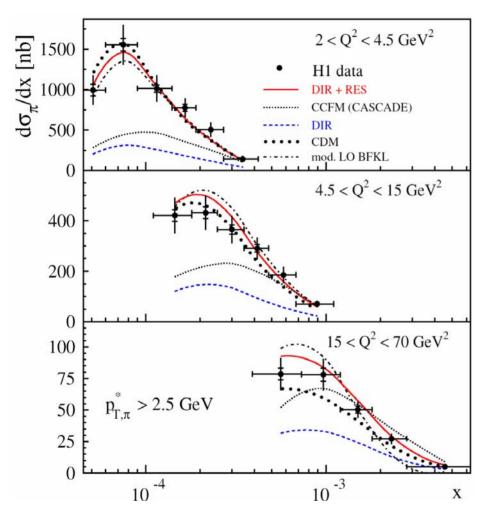
$$e + P \rightarrow e + \pi^{\circ} + X$$

Data 96-97, L~21.2 pb-1

Kinematical range

$$x_{\rm Bi}$$
 down to 10^{-5}

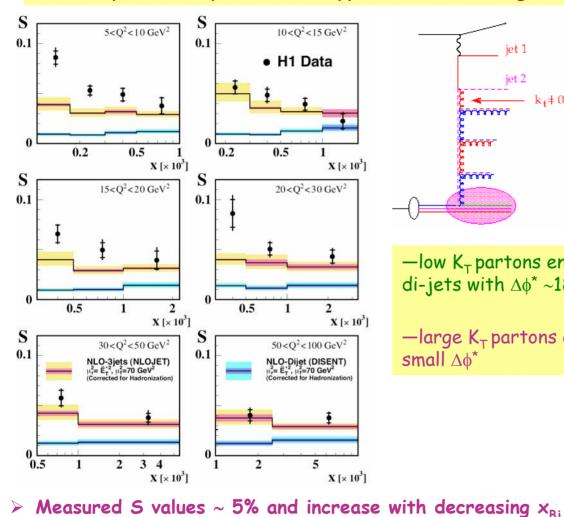
 π^0 candidates are identified via the (dominant decay) $\pi^0 \longrightarrow 2\gamma$ using CAL information

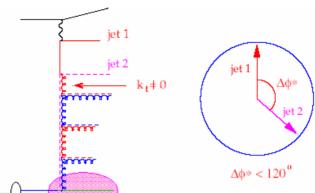

$$x_\pi = E_\pi / E_p > 0.01$$
 γs are merged into a single EM cluster $P^*_{T,\pi} > 2.5~GeV$ in hadronic-CMS $5^\circ < \theta_\pi < 25^\circ$

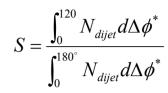
- + No ambiguity of jet algorithms
- + Identification of π^0 s is easier in the very forward region than reconstructing jets
- + More forward is possible with π^0 s
- Hadronization effects are more pronounced than for jet production
- lower rate than jet production

Forward π^0 Cross Sections

Measured π^0 cross sections versus x_{B_i} in different Q^2 intervals


- > DGLAP-DIR falls substantially below data, disagreement more pronounced at low x
- > DGLAP DIR+RES describes the data well, large μ_r and μ_f (4p_T²+Q²) needed to get enough resolved photon contribution
- \succ CCFM falls below data at low \times and low Q^2
- > CDM gives good description of data
- > Analytical calculations Mod-BFKL (momentum conservation in parton emissions is taken into account) describe the data well in low Q² regions


CTEQ6M , SAS-1D parton and virtual γ densities



Results from Di-jet Measurement H1

Parton dynamics beyond DGLAP apprx. studied looking at azimuthal correlation in di-jet events

Fraction of events with $\Delta \phi > 120$

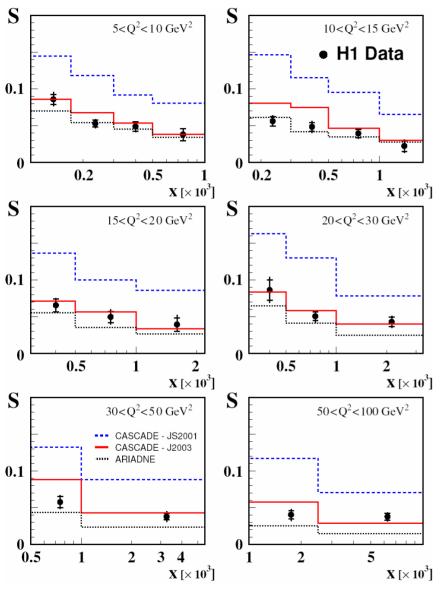
—low K_T partons entering hard scattering process produce di-jets with $\Delta \phi^* \sim 180$ as assumed in DGLAP

-large K_{τ} partons entering HS process (CCFM and BFKL) small $\Delta \phi^*$

Kinematical rang
5< Q ² <100 GeV
$10^{-4} < x_{Bj} < 10^{-2}$
0.1 < y < 0.7

Jet selection

Inclusive K_T Algorithm in HCMS


 $P_{T,iet} > 5 GeV$

-1< njet<2.5

- DISENT (lowest order) calculations predict S \sim 1% and show no $x_{\rm Bi}$ dependence
- > NLOJET (NLO) calculations give a good description at high Q^2 and x_{Bi} but fail at low x and Q_2^2

Results from Di-jet Measurement H1

- * Comparison with the models beyond DGLA
- Higher orders simulated by PS

- >CDM gives a reasonable description of data
- >CCFM with JS2001 PDF lies above the data
- ➤ With J2003 (also non-singlr. terms included in gluon splitting function) better description
- S measurements are sensitive to different un-integrated PDFs
- ❖ Significant constraint on the unintegrated gluon density

Conclusions

- Parton dynamics at low-x studied in forward jet/ π^0 and di-jet production in DIS by ZEUS and H1
- Lowest-order DGLAP calculations fail to describe forward jet/ π^0 cross sections but including res- γ a better description of data obtained
- NLO calculations fail at low Bjorken-x and for very forward jets, higher order corrections needed
- Models beyond DGLAP evolution (CCFM, BFKL) look promising in describing parton dynamics at low x