

Production of Jets in Photoproduction and in Transition Region to DIS

Juraj Bracinik Max-Planck-Institute for Physics, Munich for H1 and ZEUS collaborations

18 August 2004

photon = quantum of gauge field, massless, chargeless, pointlike coupling

- QFT $\gamma \rightarrow q\overline{q}$: leads to *hadronic* (partonic structure of photon) \Rightarrow photon behaves as hadron
- Depending on whether photon couples electromagnetically or strongly: direct and resolved processes:

- direct = photon couples pointlike, EM process
- resolved = interaction with parton from photon, strong process

Beyond LO this classification becomes ambiguous

Theoretical models:

- Inputs:
 - PDF's of proton, global fits to DIS, hh data
 - PDF's of photon, usually from $\gamma\gamma$
 - Perturbative QCD
- Leading order + Parton Shower models:
 - hadronization done in model
 - predictions on hadron level, possible to compare directly to data
- NLO calculations:
 - calculations up to fixed order in $\alpha_{\rm S}$
 - predictions on parton level
 - \Rightarrow before comparing to data, NLO is corrected for hadronization effects (Estimated by LO+PS models)

Experimental conditions:

- Q^2 ranges:
 - tagged photoproduction $(Q^2 \le 10^{-2} GeV^2)$
 - un-tagged photoproduction
 - $(Q^2 \leq 1 GeV^2)$
 - low Q^2 region $(Q^2 \ge 2GeV^2)$
- $\underline{W:}$ up to $280 \; GeV$
- <u>frame:</u> γp or LAB
- jet algorithm: inclusive k_T
- <u>corrections</u>: data are corrected to hadron level using LO+PS models and detector simulation

Inclusive jets in photoproduction: H1 and ZEUS

Good agreement with NLO over six orders of magnitude, dominant uncertainty due to theory

Inclusive jets in photoproduction: H1

Low E_T : hadronization and underlying event corrections become substantial

Inclusive jets in photoproduction: H1 and ZEUS

Good agreement with expected running of α_S Consistent and competitive measurement of α_S between HERA and LEP

More details in talk by Adam Everett

Dijets in photoproduction and at low $Q^{2} \label{eq:constraint}$

- Advantages of dijets:
 - more differential quantities
 - Allows to estimate fraction of photon energy going into hard interaction:

- Interesting questions:
 - photoproduction: $(Q^2 \Rightarrow 0)$ photon behaves as hadron (= has resolved part)
 - DIS: $(Q^2 \Rightarrow \inf)$ photon is pointlike
 - ? What happens in transition region?
 - ? Where is the transition region? (Q^2, E_T, \ldots)

η

Dijets in photoproduction and in DIS : ZEUS

NLO:

- photoproduction: direct+resolved
- DIS: direct

Comparison with data:

- \Rightarrow NLO underestimates cross section
- $\Rightarrow x_{\gamma} > 0.75 \text{ looks OK}$
- \Rightarrow discrepancy located in region $x_{\gamma} < 0.75$

Dijets in photoproduction and in DIS: ZEUS

Cross section as a function of R:

- $R = \frac{\sigma(x_{\gamma}^{obs} < 0.75)}{\sigma(x_{\gamma}^{obs} > 0.75)}$
- advantage:correlated theoretical and experimental uncertainties cancel

Comparison of data with theory:

- discrepancy goes up to rather high Q^2
- most remarkable at low E_T
- using Q^2 as a scale instead of $Q^2 + E_T^2$ improves at low Q^2

Missing higher orders (at low Q^2 could be included using concept of resolved virtual photon).

Dijets at low Q^2 : H1

Triple differential cross section as a function of x_{γ} :

- direct NLO underestimates cross section for low $x_{\gamma}, \ Q^2$ and E_T
- inclusion of resolved component of transverse virtual photon to NLO improves the description of the data
- still not enough!

Dijets at low Q^2 : H1

HERWIG(LO+PS+Had):

- direct photon calculation underestimates cross section
- including resolved transverse component improves situation
- good agreement with data after adding resolved longitudinal component

CASCADE(CCFM evolution):

- no k_T ordering (angular ordering)
- un-integrated gluon density

- reasonable (but not perfect) agreement
- no structure of virtual photon

Three jets in photoproduction: ZEUS

- Are there any three-jet observables sensitive to a structure of underlying gauge group ?
- Experimental study: cross section as a function of angles $\theta_H, \alpha_{23}, \beta_{KSW}$:

- β_{KSW} : (Körner-Schierholz-Willrodt) $\cos \beta_{KSW} = \cos \frac{1}{2} (\angle [p_1 \times p_3, p_2 \times p_B] + \angle [p_1 \times p_B, p_2 \times p_3])$
- Select predominantly direct events

LO:
$$\sigma_{ep \to 3jets} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$$

Three jets in photoproduction: ZEUS - Shape of individual terms

- Look at shape of individual terms
- Part of triple-gluon contribution (term B) has different shape
- sensitive to color configurations!

SU(3) predicts relative rates of terms:

- A: 13%
- B: 10% (triple gluon in q-induced event !)
- $\mathsf{C}{:}\ 45\%$
- D: 32% (triple gluon in g-induced event)

Three jets in photoproduction : ZEUS - Comparison with data

- Terms combined according to predicted probabilities:
- SU(3) in good agreement with data
- SU(N) for large N does not describe the data

- $C_F = 0$: the same story
- Not possible (yet) to discriminate between SU(3) and Abelian theory

- Cross sections for inclusive jets in good agreement with theory
 - \rightarrow Allow to extract α_S
- Dijets probe the structure of real and virtual photon
 - $\rightarrow\,$ theory does not describe data at low Q^2 and x_γ
 - \rightarrow higher orders needed (resolved virtual photon)
- Three jet events allow to look at structure of gauge group describing strong interactions

Interesting field, still large room for experimental and theoretical studies !

