

Forward proton detectors for H1

- Forward Proton Spectrometer
- Purpose, acceptance and detector design
- ➢ FPS upgrade for HERA II
- Resolution, calibration and momentum reconstruction
- Physics results
- New Very Forward Proton Spectrometer for HERA II
- Physics motivation, acceptance and detector design
- Resolution, calibration and momentum reconstruction
- Present status
- Summary and outlook

- Large rapidity gap between leading proton *p*' and *X*
- Leading proton measured by Forward Proton Spectrometer

LRG method:

- Large statistics
- But p dissociation (~10%)
- Forward detector noise
- →systematic errors

M.Kapishin, FPS / VFPS detectors

$$x_{IP} \cong (Q^2 + M_X^2)/(Q^2 + W^2)$$

 $\beta \cong Q^2/(Q^2 + M_X^2)$

Bjorken scaling variable:

$$\mathbf{x} = \mathbf{x}_{\mathbb{P}} \cdot \boldsymbol{\beta}$$

 Roman Pot technology, scintillating fiber detectors readout by position sensitive photo-multipliers

 low proton dissociation background

- 2 Roman Pots \Rightarrow 2 fiber detectors per Pot \Rightarrow U/V coordinates
- 5 fiber layers per coordinate, 48 fibers of 1 mm in one layer
- 4 fibers corresponding to 4 trigger tiles \Rightarrow 1 PSPM pixel
- Four 64-pixel fine mesh Hamamatsu PSPMs per Pot

- 2 Roman Pots \Rightarrow 2 fiber detectors per Pot \Rightarrow U/V coordinates
- 5 fiber layers per coordinate, 24 fibers of 1 mm in one layer
- no multiplexing: 1 fiber \Rightarrow 1 PSPM pixel
- Four 124-pixel micro-channel plate PSPMs per Pot

HERA I: FPS acceptance

- Vertical FPS acceptance: $0.1 < x_{p} < 0.5$ and p < 0.4 GeV
- Horizontal FPS acceptance: $x_{_{ID}} < 0.15$ and $0.06 < |t| < 0.6 \text{ GeV}^2$

HERA I: FPS fiber layer efficiency

- Vertical FPS: fiber layer efficiency of 60-70% resulted in:
- →track reconstruction efficiency in 2 Pots: ~50%, reduced to 30% for 5 years
- Horizontal FPS: fiber layer efficiency ~50% resulted in:
- → track reconstruction efficiency in 2 Pots: ~30%, reduced to 20% for 2 years
- Reason: radiation degradation of scintillating fibers, reduced PSPM detection efficiency ⇒ FPS detector upgrade for HERA II

- New fiber detector technology:
- radiation resistant scintillating fibers

- > 0.48mm fibers \rightarrow better spatial resolution
- ➢ fit to less expensive metal channel PSPM
- \succ 5 fiber layers → 1 road
- Horizontal FPS: 1 road \rightarrow 1 PSPM pixel
- four 64-pixel PSPMs per Pot
- Vertical FPS:
- 4 road multiplexing \rightarrow 1 PSPM pixel
- Eight 16-pixel PSPMs per Pot

Vertical FPS calibration

30

60

Pot position calibration 0 $\rightarrow \Delta X, \Delta X', \Delta Y, \Delta Y'$ by minimizing number of tracks in forbidden region

$$X = a_X(E) + b_X(E) \cdot \Theta_X$$

$$X' = c_X(E) + d_X(E) \cdot \Theta_X$$

Vertical FPS energy resolution

- E_p resolution 1.5–6 GeV in E_p range 500–700 GeV
- x_{p} resolution 5% \rightarrow 0.5% in x_{p} range 0.15 \rightarrow 0.4

Horizontal FPS resolution

• Resolution is dominated by beam optics, fiber detector resolution and Pot position calibration $\rightarrow (x_{p},t)$

- $x_{_{\rm I\!P}}$ resolution is better than LRG resolution for $x_{_{\rm I\!P}}$ >0.02
- t \rightarrow 4 bins for 0.08 < |t| < 0.5 GeV², $x_{\mathbb{P}} \rightarrow$ 4 bins for $x_{\mathbb{P}} < 0.1$

M.Kapishin, FPS / VFPS detectors

$$\mathbf{x}_{\mathbb{P}} \cdot F_2^{D(3)} \propto \mathbf{x}_{\mathbb{P}}^{2-2\alpha}$$

- smooth transition from diffractive low x_P region
 (P exchange, α~1) to nondiffractive high x_P region
 (R exchange, α~0.5)
- Colour dipole "saturation" model describes diffractive low x_p region

t-distribution in diffractive DIS

- $d\sigma/dt \propto \exp(bt)$
- b slope is measure of interaction radius
 b=R²/4
- Regge predicts "shrinkage" ("soft" pomeron) $b=b_0+2\alpha'\ln(1/x_p)$
- "hard" QCD pomeron no shrinkage α'=0
- **b** slope is "soft" or "hard"?

> Very Forward Proton Spectrometer

- Purpose: measure scattered proton with large acceptance at low x_p
- HERA II beam optics:
- ➔ best location for detector is 220m in horizontal plane
- →But cold magnet section need bypass to access proton beam pipe

Bypass of Cold Beam Line

- Horizontal bypass for helium and superconductor lines
- New 10m long warm beam pipe

before installation

after installation

VFPS: physics motivation

→Main H1 diffraction trigger for HERA II Inclusive diffraction:

- upto 10^6 events for $Q^2 > 5 \text{ GeV}^2$
- t-measurement $\rightarrow F_2^{D(4)}(Q^2,\beta,x_{\mathbb{P}},t)$
- ϕ -assymetry $\rightarrow F_{L}^{D}$ $\rightarrow \beta, Q^{2}$ dependence

Diffractive Final states:

Di−jets and open charm in DIS
 → test hard scattering factorization

Exclusive channels:

Deeply Virtual Compton Scattering

VFPS detectors similar to Vertical FPS:

- 2 Roman Pots \Rightarrow 2 fiber detectors per Pot \Rightarrow U/V coordinates
- 5 fiber layers per coordinate \Rightarrow 1 fiber road
- 4 fiber roads corresponding to 4 trigger tiles \Rightarrow 1 PSPM pixel
- Eight 16-pixel PSPMs per Pot

• 100% acceptance for $|t| \le 0.2 \text{ GeV}^2$ and $0.01 \le x_{p} \le 0.02$

• complimentary to Vertical FPS acceptance (high x range) M.Kapishin, FPS / VFPS detectors

VFPS energy reconstruction

н

- beam optics, tilt, smearing
- non-linear effects in x_{p} measurement: sex-tuple magnets
- fiber detector resolution ($\sim 100 \mu m$) + Pot position calibration

Pot position relative proton beam:

- Forward kinematic peak in θ_x , θ_y , $x_{\mathbb{P}}$ measurement from LRG method (>200 events for stable calibration)
- ➔ Cross calibration with elastic meson photo− production events as for Horizontal FPS

Pot position calibration with accuracy $\sim 100 \mu m$

Resolution is dominated by beam optics and sensitive to fiber detector resolution and Pot position calibration (t, x_{p} , azimuth ϕ)

• $x_{_{\rm I\!P}}$ resolution (~10%) is competitive with $x_{_{\rm I\!P}}$ resolution of LRG method

• ~4 bins in |t|, ~15 bins in φ for $|t| > 0.2 \text{ GeV}^2$ M.Kapishin, FPS / VFPS detectors

VFPS present status

- VFPS installation is done in autumn 2003
- Now commissioning of the whole system → readout, slow control, track and momentum reconstruction

23

• Clear forward tracks are visible in the track slope distribution M.Kapishin, FPS / VFPS detectors

- Radiation hard detectors
- Low sensitivity to stray magnetic field
- Clear process for calibration, possibility for cross calibration
- Reliable mechanics and electronics for long running without access to detectors
- Monitoring system to control detector position relative to beam, rates, magnet currents
- Many measured points per coordinate to suppress detector noise and fake track combinations

Summary and outlook

- H1 Forward Proton Spectrometer:
- based on Roman Pot technology, scintillating fiber detectors readout by position sensitive photo-multipliers
- > allowed to measure $F_2^{D(3)}$ structure function, t-dependence of DIS cross section, photo-production with leading proton
- upgraded for HERA II to increase detection efficiency and radiation resistance
- New Very Forward Proton Spectrometer for HERA II:
- Based on the technology similar to FPS
- ▷ large acceptance at low $x_{\mathbb{P}}$ → high potential for diffractive physics (inclusive, jets, charm, DVCS)
- > present status: installed and measured first forward protons