HERA charmonium

HERA variables

↓ s = (P+k)² ↓ Q²= -(k-k')² ↓ W²_{γp} = (P+q)² ↓ M_X²= (P^X)² ↓ z = (P pΨ) / (P q)

Inelastic charmonium production channels

DIS regime: scattered lepton in the main detector

PHP regime: scattered lepton **NOT** in the main detector, $Q^2 < 1$ GeV²

Inelastic charmonium signals

Inelastic J/ ψ differential cross sections in PHP

HERA initial state simple enough to have a NLO calculation in the naïve CSM scheme
theoretical uncertainties does not allow strong conclusions

how to reduce them ?

Inelastic J/\u03cf differential cross sections in PHP

J/ψ feed down

 \downarrow at HERA mostly $\psi(2S) \rightarrow J/\psi X$

 \downarrow B decays, χ_c radiative decays, ... much smaller than at the TEVATRON

• $\psi(2S) \rightarrow J/\psi X$ increases the cross sections by 15 %

NOT subtracted yet, unclear how to do it

Inelastic J/ψ differential cross sections in DIS

H1 (77 pb⁻¹)

 $\blacksquare Q^2 > 2 GeV^2$

smaller cross section but higher expected sensitivity to CO terms

like in PHP, the only distinctive variable is z

If theoretical uncertainties reduced by using $1/\sigma d\sigma/dO$

Inelastic J/ψ differential cross sections in DIS

Inelastic J/ψ differential cross sections in DIS

J/ψ helicity measurements in PHP

- helicity \Leftrightarrow shape measurements
- \Leftrightarrow insensitive to the normalization of the predicted cross section ($\alpha_s, m_c \dots$) \Leftrightarrow have to fit a distribution in each bin \Leftrightarrow thousands of events per bin

statistically not yet significant

J/ψ helicity measurements in PHP

statistically not yet significant, would be nice if the experimental errors could be halved ...

Conclusions

4 quarkonia physics has many interconnections between e p / p p and e e machines

4 quarkonia physics could also be important for CMS / ATLAS

 \neq likely we are on the right track but 30 years after the ψ discovery we do not yet know how it is produced ... a complete picture is still missing

4 a lot of exchange between theorist and experimentalist is mandatory in order to make progress