Neutral and charged current crosssection measurements and searches for new physics at HERA

Nick Malden – Manchester (UK) HEP-MAD 04, Antananarivo, Madagascar

The HERA electron-proton collider

A view inside the HERA tunnel

Nick Malden (Manchester) HEP-MAD 2004

The HERA Ring – 6.3km circumference

Recording the ep collisions at HERA

Deep Inelastic Scattering

The kinematic domain

Neutral and Charged Current Cross-sections (intro)

Nick Malden (Manchester) HEP-MAD 2004

Neutral and Charged Current Cross-sections (detail)

$$\mathbf{NC} : \left[\frac{d\sigma_{NC}^{\pm}}{dxdQ^2} \approx \frac{e^4}{8\pi x} \left[\frac{1}{Q^2} \right]^2 \left[Y_+ \widetilde{F}_2 \mp Y_- x \widetilde{F}_3 - y^2 \widetilde{F}_L \right] \right]$$

$$\frac{Y_{\pm} = 1 \pm (1 - y)^2}{\left[Y_{\pm} = 1 \pm (1 - y)^2 \right]^2}$$

$$\mathbf{CC} : \left[\frac{d\sigma_{CC}^{\pm}}{dxdQ^2} \approx \frac{g^4}{64\pi x} \left[\frac{1}{M_W^2 + Q^2} \right]^2 \left[Y_+ \widetilde{W}_2^{\pm} \mp Y_- x \widetilde{W}_3^{\pm} - y^2 \widetilde{W}_L^{\pm} \right] \right]$$

$$\frac{\widetilde{F}_2 \propto \sum (xq_i + x\overline{q}_i)}{x\widetilde{F}_3 \propto \sum (xq_i - x\overline{q}_i)} \quad \text{Only significant at high } Q^2$$

$$\widetilde{F}_L \propto \alpha_s \cdot xg(x,Q^2) \quad \text{Only significant at} \\ \text{low } Q^2 \text{ and high } y \quad \text{Similarly for } W_2^{\pm}, xW_3^{\pm} \text{ and } W_L$$

9

Reduced CC cross-sections

Valence quarks dominate at high x

HERA Charged Current

Parton density functions (PDFs)

Combined fits fits allow the extraction of parton density functions (PDFs)

H1 and ZEUS pdfs are in agreement and agree with global fits

Gluon at low x and Q² the least well constrained

Polarised CC cross-sections at HERA II

CC interaction depends linearly on the polarisation:

$$\sigma_{\rm CC}^{\pm} = (1 \pm P) \ \sigma_{\rm CC}^{\rm (P=0)}$$

SM CC interaction is left-handed. Deviations from the above give direct sensitivity to right-handed CC interactions

"Spin-flips" at intervals during HERA running give data sets with both polarisations

Fits are consistent with SM expectation – no hint of right handed charged currents yet...

New physics at HERA?

Leptoquarks

LQs are part of many GUTs which appeal to higher symmetries – SU(5) or SU(15) Buchmüller-Rückl-Wyler (BRW) model predicts 14 LQs (7 scalar / 7 vector) Yukawa coupling λ_{ij} - Branching ratios fixed: $\beta_{eq} = 1$, $\frac{1}{2}$ and $\beta_{vq} = 0$, $\frac{1}{2}$

Leptoquarks – Resonance search

Nick Malden (Manchester) HEP-MAD 2004

17

M_{LO} (GeV)

Lepton Flavour Violation

Contact Interactions

Generic search for new physics

Aim is to investigate many high P_T topologies in a coherent way, looking for deviations from the Standard Model in a model independent way

Isolated leptons and missing P_T

Only significant contribution to this signal in SM is W production with leptonic decay, particularly at high P_T (X)

Anomalous single top production? R-parity violating SUSY? (see later)

Isolated leptons – The HERA I results

H1 1994-2000	Electron	Muon	Tau (prel.)	W contrib.
<i>Lumi</i> = 118 pb ⁻¹	obs./exp.	obs./exp.	obs./exp.	<i>eμ(τ)</i>
All data	$11 / 11.5 \pm 1.5$	$8 / 2.94 \pm 0.51$	$5 / 5.81 \pm 1.36$	≈ 75 (15) %
$P_T(X) > 25 \text{ GeV}$	5 / 1.76 ± 0.29	6 / 1.68 ± 0.30	0 / 0.53 ± 0.10	≈ 85 (50) %
$P_T(X) > 40 \text{ GeV}$	3 / 0.66 ± 0.13	3 / 0.64 ± 0.14	0 / 0.22 ± 0.05	≈ 90 (55) %
ZEUS 1994-2000	Electron	Muon	Tau	W contrib.
<i>Lumi</i> = 130 pb ⁻¹	obs./exp.	obs./exp.	obs./exp.	<i>eμ(τ)</i>
All data	$\begin{array}{c} 24 \ / \ 20.6 \pm 3.2 \\ 2 \ / \ 2.9 \pm 0.46 \\ 0 \ / \ 0.94 \pm 0.11 \end{array}$	$12 / 11.9 \pm 0.6$	$3 / 0.4 \pm 0.12$	$\approx 17 (48) \%$
$P_T(X) > 25 \text{ GeV}$		5 / 2.75 ± 0.21	2 / 0.2 ± 0.05	$\approx 50 (50) \%$
$P_T(X) > 40 \text{ GeV}$		0 / 0.95 ± 0.12	1 / 0.07 ± 0.02	$\approx 60 (70) \%$

SM *W* prediction is NLO (*Diener et al.*)

H1 and ZEUS channel excesses do not match

Note the difference in purities in the selections

Isolated leptons – The HERA I results

ZEUS

The effect persists... We eagerly await more data later this year

Anomalous (FCNC) single top production

Isolated lepton, missing p_T and a hard jet also the signature for $t \rightarrow bW \rightarrow blv$

SM expectation negligible due to FCNC vertex κ_{tuy}

HERA is very sensitive to this coupling $(\kappa_{tu\gamma})$ and only slightly sensitive to κ_{tuZ}

Cross-section Limits: $(\sqrt{s}=318 \text{ GeV}; \text{CL 95\%})$ H1 : $\sigma(ep \rightarrow etX) < 0.55 \text{ pb}$ ZEUS: $\sigma(ep \rightarrow etX) < 0.225 \text{ pb}$

Comparable to limits from LEP $(e^+e^- \rightarrow \gamma, Z \rightarrow tu)$ and TeVatron (rare top decays : $t \rightarrow \gamma q, Zq$)

25

R-parity violating SUSY

SUSY is a higher symmetry between bosons and fermions – each gains a SUSY partner – fermions (bosons) gain scalar (fermionic) SUSY partners. And funny names.

R_p = (-1)^{L+3B+2S} is "even" for all known particles and "odd" for their supersymmetric partners

Violating $R_p \rightarrow SUSY$ particles can be singly produced and the LSP is not stable

Search for resonant particle production. Cascade decays leading to "wrong sign" leptons give background free channels

No excess seen in all channels. Set exclusion limits for unconstrained MSSM (squark mass independent of μ , M_2 and tan β) and for mSUGRA

R-parity violating SUSY limits

Bosonic stop decays in R-parity violating SUSY

An extension of the search for R-parity violating SUSY, assuming that the "stop" is heavier than the "sbottom" ℓ^+, \bar{q}

Resonantly produce the stop via the fusion of a positron and (mainly) a *u*-quark. The stop then decays "bosonically" to a sbottom and a *W* boson

A possible explanation for the H1 isolated lepton excess? Not really – only the isolated muons survive the selection criteria

Set limits on the stop and sbottom masses and the relevant Yukawa coupling Stops up to 260 (275) GeV are ruled out

Nick Malden (Manchester) HEP-MAD 2004

28

Gauge stop decays in R-parity violating SUSY

Nick Malden (Manchester) HEP-MAD 2004

< 210 GeV

Superlight Gravitinos

GMSB (Gauge mediated SUSY breaking) – an extension of R_p-violating SUSY, with the gravitino as the LSP (< 1 GeV). NLSP is the neutralino (short lifetime)

Signature: An isolated photon, a jet and missing P_{T}

.

GeV events .25 10 theoretically - SM MC data 2 inaccessible **GMSB:** $m(\tilde{\chi}_1^0) = 121$ GeV selectron mass / 1.75 (arb. norm.) 1.5 20 1.25 1 0.75)0 0.5 1j1=1.0 0.25 0 10 40 60 80 100 120 140 20 0 M (GeV) **First time at** $\tan \beta = 1.5, \mu < 0,$ N=2**HERA indep. of** χ₁⁰ not NLSP **One candidate event – derive** squark mass 60 70 90 100 110 120 130 limits on GMSB parameters neutralino mass / GeV

Nick Malden (Manchester) HEP-MAD 2004

preliminary

2.5

Superlight Gravitinos

120

100

80

mass

selectron

theoretical

λ'_{1j1}=1.5

70

ŔА

χ₁º not NLSF

90

1990

GMSB (Gauge mediated SUSY breaking) – an extension of R_p-violating SUSY, with the gravitino as the LSP (< 1 GeV). NLSP is the neutralino (short lifetime)

SM MC

GMSB: $m(\tilde{\chi}_1^0) = 121$ GeV

N=2

128

130

140

110

neutralino mass / GeVV)

One candidate event – derive limits on GMSB parameters

60

40

20

Nick Malden (Manchester) HEP-MAD 2004

preliminary

(arb. norm.)

80

100

120

140

M (GeV)

data

2.5

.25

1.75

1.5

1.25

0.75

0.5

0.25

0

0

1

2

events

HERA indep. of

squark mass

And finally... Strange pentaquark searches (ZEUS)

Strange pentaquark (ZEUS)

Evidence for an anti-charmed pentaquark (H1)

Signal + background fit (Gaussian + power law) gives Mass = 3099 ± 3 (stat.) ± 5 (syst.) MeV Width = 12 ± 3 MeV Background only fit gives N_B=51.7 Poisson prob. (4 x 10⁻⁸) to fluctuate to ≥ 95 events corresponds to 5.4 σ

Observation not yet confirmed by ZEUS...

Summary

HERA, the only electron-proton collider in the world, plays a unique and important role in global particle physics

H1 and ZEUS can study the structure of the proton with unprecedented precision – crucial in the preparation for the LHC

Searches for signs of physics beyond the Standard Model can explore unchartered regions of phase space...

...and indeed fascinating hints of potential signals are seen.