

HADRON STRUCTURE 2004 Smolenice Castle, Slovakia

Exotic Hadronic States at HERA

Mónica L. Vázquez Acosta (NIKHEF)

- Introduction
- Strange Pentaquarks: Θ^+ , Ξ^{--}
- Charm Pentaquark: Θ_c
- Summary

D.Diakonov, V. Petrov and M. Polyakov (hep-ph/9703373) "Exotic Anti-Decuplet of Baryons: predictions from Chiral Solitons"

Prediction of exotic baryon: $m_{\Theta_+} \approx 1530 \text{ MeV}$ $\Gamma_{\Theta_+} < 15 \text{ MeV}$ $J^P = 1/2^+$ I = 0

belonging to: 10 of SU(3)_f

ZEUS

Experimental Evidence of Pentaquarks

 $\Theta^+ \rightarrow nK^+$

Also evidence for: NA49: Ξ^{--} (ddss \overline{u}) H1: Θ_c (uudd \overline{c})

⊖⁺→pK_s Fixed target: valence quarks High energy: fragmentation

Exotic Hadronic States at HERA, Mónica L. Vázquez Acosta (NIKHEF)

HERA: ep Collider

Secondary scattering will mainly produce baryons

The anti-baryon $\overline{\Theta}^-$ pentaquark (\overline{uudds}) can only be produced in fragmentation!!!

Peak: 498 ±0.01 MeV Background: < 6% Candidates: ~ 870,000

FUS

Energy loss measurement dE/dx in the central tracking chamber

- **dE/dx** > 1.15 mips
- momentum(p) < 1.5 GeV
- ~ 60% proton purity

K_Sp Resolution: 2 ±0.5 MeV ^{0.6} (MC estimation consistent with K* measurement)

$$\sigma(\mathbf{ep} \to \mathbf{e\Theta}^+ \mathbf{X} \to \mathbf{eK}_{\mathrm{S}}^0 \mathbf{p} \mathbf{X}) : 125 \pm 27(\mathrm{stat})^{+36}_{-28}(\mathrm{syst}) \mathbf{pb}$$

$$\sigma(\Theta^+ \to \mathbf{K}_{\mathrm{S}}^0 \mathbf{p}) / \sigma(\Lambda) = 4.2 \pm 0.9(\mathrm{stat})^{+1.2}_{-0.9}(\mathrm{syst})\%$$

- Is peak a new Σ^{*+} or a pentaquark state
- If peak is $\Sigma^{*+} \Rightarrow$ also see a peak in M($\Lambda \pi^+$)
 - member of baryon octect: b.r. $(\Lambda \pi^+)/(pK_s) \ge 3/2$ - member of decuplet: b.r. $(\Lambda \pi^+)/(pK_s) \sim 3/2$ (M.Polyakov)

No peak in $\Lambda \pi^+$ spectrum near 1530 MeV But Λ_c clearly seen \Rightarrow mass peak cannot be a sigma resonance

Assuming an atomic mass dependence of $\sigma_N \propto A^{0.7}$ for the production cross section,

the UL(95%) for $B \cdot d\sigma/dy|_{y=0}$ for Θ^+ production is:

- 3.7 µb/nucleon @ 1530 MeV
- 22 μ b/nucleon @ 1540 MeV

• Clear Signal for well established $\Lambda(1520) \rightarrow pK^{-}$

• No Signal for $\Theta^{++} \rightarrow pK^+ \longrightarrow \Theta^+$ isoscalar

The NA49 signal (Ξ^{--}) search in ZEUS

$$\Xi^{--} \rightarrow \Xi^{-} \pi^{-}$$
$$\rightarrow \Lambda^{0} \pi^{-}$$
$$\rightarrow \mathbf{p} \pi^{-}$$

FUS

Inclusive DIS event sample (105 pb⁻¹)
High statistics, small background

Charm quark production in DIS

Main contribution comes from **boson-gluon fusion**

Charm tagging is efficiently done by reconstructing D* Golden channel: $D^{*+} \rightarrow D^0 \pi_S \rightarrow (K\pi)\pi_S$

$$D^{*+} \rightarrow D^0 \pi_s \rightarrow (K\pi\pi\pi)\pi_s$$

Q² > 1 GeV² (DIS) 96 – 00 H1 data (75 pb⁻¹)

 $p_T(D^*) > 1.5 \text{ GeV}$ $p_T(K) + p_T(\pi) > 2 \text{ GeV}$ $-1.5 < |\eta(D^*)| < 1$ $z(D^*) > 0.2$

Signal region ~ 3400 D*

Good signal/background ratio

Energy loss measurement dE/dx in the drift chamber

Parametrisation precision ~3-5%

MIP resolution ~8%

Use normalised likelihoods $L(\pi) + L(K) + L(p) = 1$

Use dE/dx for background suppression

Narrow resonance at M =3099 \pm 3(stat) \pm 5(syst) MeV

No significant signal in same charge combination

The charmed pentaquark search in H1

Signal also seen in independent sample of photoproduction

TUS

The momentum spectrum of the particles in the signal region is harder than in the $M(D^*p)$ side bands

At large proton momentum the signal is more pronunced

Background fluctuation probability: $4x10^{-8}$ (Poisson)=5.4 σ (Gauss)

The charmed pentaquark search in ZEUS \mathbb{N} $\mathbb{D}^* \to (K\pi)\pi_s \text{ ZEUS } \mathbb{D}^* \to (K\pi\pi\pi)\pi_s$

$D^* \rightarrow (K\pi)\pi_S$ $p_T(D^*) > 1.35 \text{ GeV}$ $D^* \rightarrow (K\pi\pi\pi)\pi_S$ $p_T(D^*) > 2.8 \text{ GeV}$

95-00 ZEUS data (126 pb⁻¹)

Number of D*

Total sample > 62000 DIS sample > 13000

Proton identification

Energy loss measurement dE/dx in the central tracking chamber

Expectations tuned using tagged protons and pions from $\Lambda \& K_s$ decays

$$\chi^{2} = \frac{\left[\ln(dE/dx) - \ln(dE/dx)_{expected}\right]^{2}}{\sigma_{\ln(dE/dx)}^{2}}, \quad \sigma_{\ln(dE/dx)}^{2} = a/\sqrt{n_{hits}}$$

l_p: probability to produce the observed or larger value of χ^2

Acceptance $A(l_p > 0.15) = 85 \pm 0.1 \%$

ZEUS finds NO charmed pentaquark ...

All events

No signal seen in different channels or selections

No signal in either channel or for Q²> 1 GeV²

Upper limit at 95% CL $R = N(\Theta_C \rightarrow D^*p)/N(D^*)$ R < 0.23%R < 0.35% for Q² > 1 GeV²

R<0.29% for Q² < 1 GeV²

<u>Universal upper limit</u>

 $f(c \rightarrow \Theta_{c}) \cdot B_{\Theta_{c} \rightarrow D^{*}p} < 0.16\%$

R~1% excluded at 9σ

ZEUS data with H1 selection cuts

ZEUS

NO CHARM PENTAQUARK!

$$Q^2 > 1 GeV^2$$

$$Q^2 < 1 GeV^2$$

Number of **D**^{*}

 $Q^2 > 1 \text{ GeV}^2$: 5920±90 $Q^2 < 1 \text{ GeV}^2$: 11670 ± 140

SUMMARY

ZEUS measurement:

- One of the most precise (largest number of candidates)
- Smallest width due to one of the best resolutions in the K_sp channel

H1 sees narrow resonance at M =3099 \pm 3(stat) \pm 5(syst) MeV

background + signal hypothesis Fit: Mass: $3099 \pm 3(stat) \pm 5(syst)$ MeV Width: 12 ± 3 MeV (consistent with experimental resolution) Numbers of signal and bg. within 2σ N_b = 45.0 ± 2.8 N_s = 50.6 ± 11.2 (~ 1% of D* yield)

ZEUS does not see a narrow resonance

$$R = N(\Theta_{C} \rightarrow D^{*}p) / N(D^{*}) \sim 1\% \text{ excluded at } 9\sigma$$
$$f(c \rightarrow \Theta_{C}) \cdot B_{\Theta_{C} \rightarrow D^{*}p} < 0.16\%$$

R< 0.35% for Q² > 1 GeV² R<0.29% for Q² < 1 GeV²

Pentaquark searches at HERA

Puzzle!! : exciting times ahead

FUS