

Hadron Structure 2004 Smolenice Castle, Slovakia

Measurements of proton structure at low Q^2

Andrea Vargas

University of Dortmund

- Introduction
- \bullet F_2 Measurement at large x
- \bullet F_L Determination
- Summary

Deep Inelastic Scattering

- kinematic variables:
 - $s=(p+q)^2$ cms energy $Q^2=-(p-k)^2$ momentum transfer $x=rac{Q^2}{2p\cdot q}$ Bjorken-variable
- additional information
 - $y\simeq rac{Q^2}{sx}$ Inelasticity $W^2=Q^2rac{1-x}{x}+m_p^2$ cms energy in γ^*p system

Structure functions in DIS

Measuring the cross section:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}xdQ^2} = \frac{2\pi\alpha^2}{Q^4x} \left(Y_+ F_2(x,Q^2) - y^2 F_L(x,Q^2) \right) \qquad Y_+ = 1 + (1-y)^2$$

 F_2 is measured, F_L is extracted

•
$$F_2(x,Q^2) = x \sum_i e_i^2 [q_i(x,Q^2) + \bar{q}_i(x,Q^2)]$$

- \blacktriangleright Dominates the low y region
- Sensitive to quark content
- $F_L(x,Q^2)$
 - Contributes only at high y
 - $\blacktriangleright \text{ QPM: } F_L = 0$
 - QCD: $F_L \neq 0$ (gluon emission)

Kinematic Plane

Experimental techniques at low Q^2

Experimental techniques at low Q^2

Measuring large scattering angles \Rightarrow

- Detectors close to the beam pipe (ZEUS BPC/BPT)
- Radiative events

Shifted vertex runs

Shifted Vertex F_2 Measurements ہ۔ ل $Q^2 = 0.35 \text{ GeV}^2$ $Q^2 = 0.5 \text{ GeV}^2$ $Q^2 = 0.65 \text{ GeV}^2$ H1 svtx00 prel. 1 • H1 99 prel. • H1 97 ★ NMC ZEUS BPT97 Fractal Fit ц^а О ALLM97 $Q^2 = 0.85 \text{ GeV}^2$ $Q^2 = 1.2 \text{ GeV}^2$ $Q^2 = 1.5 \text{ GeV}^2$ $H1_{Q^2_{min}} = 3.5 \text{ GeV}^2$ 1 ц^а О $Q^2 = 2.5 \text{ GeV}^2$ $Q^2 = 2 \text{ GeV}^2$ $Q^2 = 3.5 \text{ GeV}^2$ Collaboration Ξ 0 $10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-5} 10^{-4} 10^{-3} 10^{-2}$ X

ISR Measurement Method

Signature:

New method:

- $\bullet \ \gamma \text{ is undetected}$
- $\bullet x, Q^2, E_e$ reconstructed:
 - \star final state
 - \star energy momentum conservation

 γ emitted from incoming e:

- cms is reduced \Rightarrow accessing the **high** *x* region is possible!
- Alternative ISR F_2 analysis:
 - γ explicity detected

ISR Measurement in Shifted Vertex run

Reminder: $\Sigma-$ method

Incoming energy:

$$2E_e = (E - P_z)_{tot}$$

• Kinematic:

$$X_R = \frac{Q_{\Sigma}^2}{4E_e E_p}$$

 $\mbox{BST}\Rightarrow\mbox{suppression of }\gamma p$ background

Cross Section Measurement using ISR events

high x at low Q^2 is accessed

Improved extractions of λ

 $\lambda = \left(\frac{\partial \ln F_2}{\partial \ln x}\right)_{Q^2}$ ▶ Rise of F_2 at $x < 10^{-2}$ well parametrized by $F_2 = c(Q^2)x^{-\lambda(Q^2)}$ ► At $Q^2 > 3$ GeV²: $\lambda \approx \ln Q^2 \quad c \approx {\rm const}$ Partonic degrees of freedom ► At $Q^2 < 2$ GeV²: $\lambda \rightarrow 0.08$ Transition to hadronic degrees

of freedom

Inelastic QED-Compton events

Signature:

Medium-High x is measured

 $x\epsilon(0.001 - 0.06)$

- \blacktriangleright understanding of HFS at low W
- ► Use SOPHIA MC model

F_2 measurement with QED-Compton events

Good agreement with fixed target experiments

Measurement of F_L

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}xdQ^2} = \frac{2\pi\alpha^2}{Q^4x} \left\{ \left[1 + (1-y)^2 \right] F_2(x,Q^2) - y^2 F_L(x,Q^2) \right\}$$

 \triangleright F_L : contribution to σ only at high y

 \blacktriangleright Direct measurement requires data at different s

At fixed Q^2, x

varying $s \Rightarrow y$ vary

Hadron Structure 2004

Measurement of F_L

Extraction of F_L

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2 Y_+}{Q^4 x} \sigma_r \quad \sigma_r = F_2(x, Q^2) - \frac{y^2}{Y_+} F_L(x, Q^2)$$

- Indirect determination:
 extrapolating F_2 to higher y
 $F_L \propto F_2 \sigma_r$ Derivative method
- Shape method

$F_{I_{\perp}}$ extraction: Derivative method $\left(\frac{\partial \sigma_r}{\partial \ln y}\right)_{Q^2} = \left(\frac{\partial F_2}{\partial \ln y}\right)_{Q^2} - \frac{2y^2(2-y)}{1+(1-y)^2}F_L$ (adr/alny)_{Q2} 0.5 straight line fits: H1 Collaboration 0 low y < 0.2 points $Q^2 = 1.35 GeV^2$ $Q^2 = 0.75 GeV^2$ -0.5 10⁻² 10^{-1} 0.5 1 linear behaviour of F_2 at high yy H1 svtx00 preliminary 0 F_L : deviation of measured points line fit extrapol. of line fit from linear behaviour at high y $Q^2 = 2.2 \text{ GeV}^2$ -0.5 10^{-2} 10⁻¹ y

Andrea Vargas

F_L extraction: Shape method

good agreement with measured cross section

Shape method vs. Derivative method

Shape method: more precise

$F_L(Q^2)$ at Fixed y=0.75

New constrains from low Q^2 data

- Agreement with NLO pQCD fits
- H1 non-negligible positive F_L at low $Q^2 \Rightarrow$ positive g

Summary

- F_2 is measured with *two new methods*
 - QEDC: $Q^2 \rightarrow 0.1 \; \mathrm{GeV}^2 \quad 0.001 \leq x \leq 0.1$
 - ISR:

 $0.35 \le Q^2 \le 0.85 \; {\rm GeV}^2 \quad 10^{-4} \le x \le 5 \cdot 10^{-3}$

- Structure function F_L
 - Measured with ISR
 - Extracted with Derivative and Shape method
- $F_L(Q^2)$ at $W = 276 \,\mathrm{GeV}$

 $-\!$ non-negligible positive F_L at low Q^2