

<u>Svetlana Vinokurova</u>

September 18-23

Diffraction 2004

Gala Gonone Sardinia ITALY

Diffractive production of charm and jets

September 18-23

Diffraction 2004

Gala Gonone Sardinia ITALY

<u>Diffractive production</u> <u>of charm and jets</u>

- Testing QCD factorization in diffraction
- Diffractive D* in DIS
- Diffractive Dijets in DIS
- Dijets in diffractive photoproduction

from Inclusive Diffraction to final states

Factorization Theorem:

- Factorization theorem establishes universality of diffractive parton densities for class of processes to which the Theorem applies.
- This means that one may extract parton densities from subset of data and then, using same densities, reliable predict other diffractive distributions.

$$\sigma^{D} = \sum_{\text{partons i}} \mathbf{f}_{i}^{D} \otimes \hat{\sigma}^{\gamma_{i}}$$

hard diffractive <u>cross section can be written</u> as convolution of diffractive parton densities of proton : f_i^D with hard parton-parton cross section : $\hat{\sigma}^{\gamma i}$

• <u>Hard scale</u> : - Q² - p jet - heavy quarks

Based on QCD hard
 scattering factorization it
 should be possible to
 predict hard
 diffractive final states
 using diffractive PDFs

- Experimental tests of Factorization Theorem

Collinear factorization approach

- × Using diffractive parton densities from QCD fit to $F_2^{D(3)}$
- Charm production via the BGF: sensitive to diffractive gluon density
- K Gluon dominant(75 ± 15 %)

NLO, MC comparison with D* in DIS

NLO Calculation

- HVQDIS with NLO diff.PDFs and charm quark fragmentation
- $\mu_r^2 = \mu_f^2 = Q^2 + 4m_c^2$

scale uncertainty : μ_r varied by factors 2, 0.5 \gg inner band in fig.

- m_{charm} = 1.5 GeV varied: 1.35 ... 1.65 » outer band in fig
- Peterson fragmentation :
- E = 0.078 varied: 0.035 ... 0.1
 >> outer band in fig.

<u>Monte Carlo</u>

Rapgap : LO generator, based on matrix elements and diffractive parton densities supplemented with parton showers

$$\mu_r^2 = \mu_f^2 = Q^2 + p_t^2 + 4m_c^2$$

Diffractive DIS D*

- × D*->D°π_s->Kππ_s
- × Lumi = 42.3 pb^{-1}
- × Rapidity Gap Selection

Diffraction 2004

Diffractive DIS D*

kinematical region

 $y \in [0.05; 0.7]$ $Q^2 \in [2; 100] GeV$ xpom < 0.04 pt (D*) > 2 GeV $|\eta(D^*)| < 1.5$ My < 1.6 GeV $|t| < 1. GeV^2$

Ovis = 333 ± 42(stat) ± 62(sys) pb

(dominant sys.): Track Reconstruction, Signal Extraction from Fit, Model Dependencies ...

NLO Predictions
$$\sigma$$
 = 241 + 66 pb

<u>Diffractive</u> <u>DIS D*</u>

Reasonable description of all distributions by NLO calculation

Svetlana Vinokurova

Diffraction 2004

Diffractive

ß

 $\mathsf{x}_{\mathbb{P}}$

DIS D*

Diffractive DIS D*

H1 Diffractive D

- Good agreement data and theory
- MC with Parton Showers is similar to NLO

Perturbative 2-gluon approach

- Xpom < 0.01 (to suppress q-exchange)
- using un-integrated gluon densities of proton
- diffraction as exchange of colorless 2-gluon state
- significant Pt of gluon in ccg system – no room for soft diffractive remnant

Perturbative 2-gluon approach

- Xpom < 0.01 (to suppress q-exchange)
- using un-integrated gluon densities of proton
- diffraction as exchange of colorless 2-gluon state
- significant Pt of gluon in ccg system – no room for soft diffractive remnant

Some contributions, which are not covered by factorization theorem J.Collins ??

2-gluon with Diffractive DIS D*

Svetlana Vinokurova

Diffraction 2004

Dijets in diffractive DIS

<u>Data</u>

- ^{*} Lumi = 18 pb⁻¹
- * Rapidity Gap Selection

 $Q^2 \in [4;80] \text{ GeV}^2$

165 < W < 242 GeV inclusive k_T cluster algorithm $E_T^{\star,je^{\pm 1(2)}} > 5(4)$ GeV Xpom < 0.03

My < 1.6 GeV |t| < 1. GeV² NLO prediction DISENT program for standart DIS, interfaced to diffractive PDFs

$$\mu_{R} = E_{T}^{*,jet1}, \quad \mu_{f} = 6.2 \text{ GeV}$$

scale uncertainty 20% : μ_r varied by factors 2 $_{\&}$ 0.5 >> error band

<u>calculations</u> : jets of partons <u>measurements</u> : jets of hadrons

NLO cross sections corrected for hadronisation effect

Monte Carlo LO Matrix Elements with Parton Showers PDFs scale : $\mu^2 = \hat{p}_T^2 + 4 m_{qq}^2$

Diffractive Dijets in DIS

Distributions well described by NLO

Diffractive DIS Dijets

- NLO calculation gives reasonable description of data
 - LO results too low, shape not described

QCD Factorisation is applicable in diffractive DIS, tested in D* and Dijets production

<u>Dijets with tagged p at the Tevatron</u>

Dijets in Diffractive Photoproduction

Quasi-real photon (Q²≈ 0) can develop hadronic structure

- X_{γ} momentum fraction of photon entering hard process
- $X_{\gamma} = 1$ direct photon coupling, similar to DIS
- Xy < 1 resolved interaction, similar to hadron-hadron scattering

Does QCD Factorization also work in diffractive photoproduction ?

Data, NLO and MC in diffractive Photoproduction

<u>Data</u>

- ^{*} Lumi = 18 pb^{-1}
- * Rapidity Gap Selection

Q^2 < 0.01 GeV²

165 < W < 242 GeV inclusive k_T cluster algorithm $E_{T}^{\star,je\pm1(2)} > 5(4)$ GeV Xpom < 0.03 My < 1.6 GeV |t| < 1. GeV²

NLO prediction obtained

with Frixione et al. program interfaced to NLO 'H1 2002 fit' diffractive PDFs and NLO GRV photon PDFs

$$\mu_{\rm R}$$
 = $\mu_{\rm f}$ = E*,jet1

<u>Monte Carlo</u> LO Matrix Elements with Parton Showers $\mu_{\rm R} = \mu_{\rm f} = p_{\rm T}^2$

Dijets in diffractive Photoproduction

- NLO prediction using PDFs is above data by factor ~ 2 (compared to factor ~ 10 at the Tevatron)
- Rapgap describes data

Suppression of only resolved component...

Theoretical prediction of suppression factor (R = 0.34) of resolved contribution : A.B.Kaidalov, V.A.Khoze, A.D.Martin and M.G.Ryskin "Unitarity effects in hard diffraction at HERA", Phys. Lett. B567 (2003) 61

X This approximation also doesn't describe data

Svetlana Vinokurova

Diffraction 2004

Diffractive Dijets in photoproduction

Svetlana Vinokurova

Ratio of Data to NLO Prediction

Conclusion

- Measurements of Jets and D* production are presented
- Different perturbative QCD approaches to diffraction are tested

Diffractive DIS

I. Collinear factorization approach is applicable in description Dijet and D* events in DIS.

QCD Factorization in agreement with DIS data

II. Perturbative 2g calculation in agreement with diffractive DIS D* cross sections for Xpom < 0.01</p>

Diffractive Photoproduction

I. Dijet measurements show that NLO prediction is above data by factor ~ 2 $\,$

Backup.Event Comparison

Svetlana Vinokurova

<u>Kinematic reminder</u>

Backup.Kinematics

Svetlana Vinokurova