High-|t| Diffraction & Deeply Virtual Compton Scattering

K.Hiller, DESY Zeuthen On behalf of the H1 Collaboration

DIFFRACTION 2004

Cala Gonone, Sardinia,ITALY 18 – 23 September 2004

□ Introduction

- kinematics, motivation, signature, models

\Box Data - J/y and photons

- luminocity, selection, backgrounds
- cross sections versus W, t or Q^2
- spin density matrix elements for J/y

□ Comparisons

- light vector mesons, low-|t| range
- perturbative QCD models (BFKL, colour diople, ..)ZEUS

□ Summary & Outlook

Kinematics of Vector Meson Production

elastic at low-|*t*|

dissociative at high-|t|

Exclusive VM production described by 4 variables:

 $Q^2 = -(k - k')^2$... photon virtuality $t = (p - p')^2$... proton momentum transfer ² $W = v(q+p)^2$... **g**p center-of-mass energy V = vector meson ... **r**, **w**, **f**, J/y, U

For helicity studies: 3 scattering / decay angles

elastic-to-dissociative cross section ratios

Event Signature

 \Box Photoproduction: \rightarrow electron scatters through small angle, mostly untagged, $Q^2 \sim 0$ \Box Diffractive proton dissociates \rightarrow activity in forward detectors \Box Only J/y decay particles or photon visible in H1 detector

single photon

J/v identified by 2 high- p_{τ} leptons

g identified by el.mag. shower

Clean / exclusive processes with less backgrounds

VM Production in pQCD

□ <u>General picture</u>:

- g^* fluctuates into $q\bar{q}$, $q\bar{q}g$ colour dipole
- exchange of colour singlet with proton
- qq̄ condensates in a vector meson VM
 (→ wave function needed to form VM)

□ Colour singlet exchange: → large rapidity gap

- 2 gluons in lowest order ,
- higher orders \rightarrow gluon ladders
- increasing cross section $s \sim |x g(x)|^2$ at low x

Approaches to add higher orders:

DGLAP: - ordered momenta along ladder rungs

- valid for $|t| < M_v^2$
- weak increase of σ with W
- works for inclusive DIS over large Q²-x range
- BFKL: unordered momenta along ladder
 - at high-| t power law dependence | t -n
 - strong increase of σ with ${\it W}$

Test pQCD in limit of large |t| and small x

High-|t| J/y Production

$e + p \rightarrow e + J/y + Y$

 $\Box 2 < |t| < 30 \text{ GeV}^2$ for g^*p energies 50 < W < 150 GeV□ Untagged photoproduction: $<Q^{2}> \sim 0.006 \text{ GeV}^{2}$ \Box Diffraction : high fractional J/y momentum $z = (p_{J/y}p) / (p q) > 0.95$ $z \sim 1 - (M_v^2 - t) / W^2$ \rightarrow low $M_{\rm v} < 30 \, {\rm GeV}$ **□** Full HERA-I sample: $L = 78 \text{ pb}^{-1}$ \rightarrow 850 decays $J/y \rightarrow \mu^+\mu^-$ **Compare with ZEUS:** $L = 24 \text{ pb}^{-1}$ \rightarrow 150 J/y at $|t| < 6 \text{ GeV}^2$

Simulation with BFKL LL model
 Small contribution from *Y(2S)* Non-resonant background negligible

J/y Cross Section versus |t|

□ Incompatible with exponential dependence

Better fit: power law |t|⁻ⁿ, with n ~ 3 as expected for hard process

□ Increase of *n* with lower |*t*| cut expected: - *n* ~ 1.7 for $1 < |t| < 6 \text{ GeV}^2$, ZEUS - *n* ~ 3.8 for |*t*| > 10 GeV²

- □ DGLAP LLA : \rightarrow fine for $|t| < M_V^2 \sim 10 \text{ GeV}^2$ Gotsman,Levin,Maor,Naftali
- □ BFKL LLA : Enberg, Motyka, Podludniowski → fixed $a_s = 0.18$ plus NL order fine → running a_s : worse at low |t|

pQCD models reproduce high-|t| dependence

J/y Cross Section versus W

Power law W^d, d ~ 1 works well similar to low-|t] elastic J/y photoproduction

□ large *d* indicates a hard process → see ρ at high Q²

□ Regge model: $\sigma \sim W^{4(\mathbf{a(t)}-1)}$ → $\alpha_0 \sim 1.17, \alpha' \sim 0$ → no universal soft Pomeron

 □ DGLAP LL: → fails at higher | t > M_V²
 □ BFKL LL: → better, but too steep at low-| t

REMIND:

- Production and decay angular spectra reflect the virtual photon and VM polarization
- □ s-channel helicity conservation (SCHC): VM polarization = photon polarization
- Analysis scheme: 3 production / decay angles define 15 spin density matrix element (spin non-flip, single-flip, double-flip amplitudes)

J/y – Decay Angular Spectra

Untagged photoproduction: \rightarrow 2 angles \rightarrow 3 matrix elements:

$$d\mathbf{s}^{2} / d\cos\Theta^{*} d\mathbf{f}^{*} \propto (1 + r_{00}^{04}) / 2 - (3r_{00}^{04} - 1)\cos^{2}\Theta^{*} + \operatorname{Re}\{r_{10}^{04}\}\sin 2\Theta^{*}\cos\mathbf{f}^{*} + r_{1-1}^{04}\sin^{2}\Theta^{*}\cos 2\mathbf{f}^{*}$$

Fit 2 projections in 3 |t|-bins:

Spin density matrix elements from 2-dim. fit :

→ Data consistent with SCHC $r_{00}^{04} = r_{1-1}^{04} = Re\{r_{10}^{04}\} = 0$ in contrast to light VMs

High-|t| Photon Production

Motivation:

□ simplest final state: no VM wave function enters
 □ nice test of BFKL evolution at high-|*t*|
 □ extended range in pseudorapidity → large gap
 □ complementary to high-Q² photons, "DVCS"

Simple & clean kinematics:

 $|t| \sim (p_T g)^2$

Diffractive selection: fractional Pomeron momentum

- $x_P = q (P-Y) / q P \sim (p_T g)^2 / W^2$
- $y_P = P(q-X) / q P \sim e^{-Dh}$

Event Selection

$e + p \rightarrow e + g + Y$

□ <u>Tagged photoproduction</u>

electrons: Q² < 0.01 GeV², 175 < W < 247 GeV

photons: $E_g > 8 \text{ GeV}, p_T > 2 \text{ GeV}$

□ <u>Rapidity gap</u> $y_P \sim \Sigma (E - P_z) / 2E_g < 0.018$ $\rightarrow \Delta \eta > 2$

Backgrounds

- inclusive photoproduction < 9%, subtracted
- hight- $|t| \omega$ production & others negligible
- Bethe-Heitler kinematically suppressed

□ <u>First measurement</u> 1999-2000, *L* = 47.6 pb ⁻¹

Photon Cross Section versus *x_P* and |*t*|

□ Both spectra show typical, diffractive behaviour: steep falls ...

 \Box BFKL LLA with $a_s = 0.15...0.17$ reproduce the general trend

 \Box Large errors \rightarrow needs more precise data to evaluate models

Deeply Virtual Compton Scattering (DVCS)

\dots or high Q^2 photons

Backgrounds

Motivation

- simple final state: similar to VM production, but no wave function needed
- at hard scale factorized ansatz : hard scattering @ proton PDFs
- unequal parton momenta give access to skewed / generalized PDFs
- □ Bethe-Heitler background pure el.mag. process → precisely known

But: small cross section compared to VM production due to add. el.mag.coupling

DVCS - Data Sample

DVCS candidate sample:

- e⁺ in SpaCal *E*>15 GeV,
- **g** in LAr Calorimeter $p_T > 2$ GeV,
- only 1 track related to e+
- no forward activity

□ <u>Kinematic range :</u>

- $4 < Q^2 < 80 \text{ GeV}^2$,
- 30 < W < 140 GeV,
- $|t| < 1 \text{ GeV}^2$

$e + p \rightarrow e + g + p$

□ <u>Backgrounds:</u>

- Bethe-Heitler process: e⁺ and g dom.backwards
- misidentified diff.electroproduction of \boldsymbol{r}
- misidentified e*e⁻ production
- \rightarrow well-checked by control sample

□ **<u>2000 Data:</u>** *L* = 26 pb⁻¹

DVCS – pQCD & Skewed PDFs

Model of Freund et al.:

□ NLO: leading twist

skewed PDFs:

- q-singlet $Hq(x,x,t,m^2) = q(x,m^2) e^{-b|t|}$
- gluon $Hg(x,x,t,m^2) = xg(x,m^2) e^{-b|t|}$ based on MRTS2001 or CTEQ6

□ unknown *t*-slope: → error bands $b = b_0(1 - 0.15 \log(Q^2/2)) \text{ GeV}^2$ with 5 < b_0 < 9 GeV⁻²

soft contribution: via aligned jet model

NLO QCD describes data

DVCS – Colour Dipole Models

Donnachie - Dosch: soft + hard Pomeron

<u>Favart - Machado:</u> Golec-Biernat / Wusthoff saturation model (w/out DGLAP evol.)

Both: |t|-slope: $b = 7 \text{ GeV}^{-2}$

→ Q^2 dependence rather flat: $n(\mathbf{r}) = 2.60 \iff n(\mathbf{g}) = 1.72$

→ W – dependence steep:
 d ~ 1 indicates hard process

Both dipole models fit the data

Summary

□ high-|*t*| *J*/y:

- observe power law in |t|-dependence and steep W-dependence expected for a hard process
- BFKL approach best candidate to describe high-| t range
- angular spectra in agreement with SCHC \rightarrow constrain VM wave function

□ high-|*t*| photons:

- BFKL model reproduce x_P and |t|-spectra

DVCS / high-Q² photons :

- models based on skewed PDFs and dipole models provide fair descriptions

□ all processes:

- more statistics is needed to favor / rule out models
- measure | t -slope in DVCS processes

□ future:

- HERA-2 started and delivers good luminocity
- H1 upgraded & new very forward proton detectors for elastic scattering
- Hope to end 2007 with 1 fb⁻¹

Diffraction at soft scales

Soft means: low Q² / |t|, or light VM

Soft processes nicely described by Soft Pomeron & Vector Dominance Model

Photon Cross Section versus x_P

□ Clean diffractive sample $x_P < 0.0007$ (inclusive mostly $x_P < 0.05$)

□ Typical steep rise at smaller x_P as described by Pomeron exchange

 $ds/dx_{P} \sim 1/W^{2} x_{P}^{-2(1+\alpha 0)}$

□ BFKL LL Approximation:

 $\alpha_0 = (3 \alpha_s / \pi) 4 \ln 2$

Data fairly well-described by BFKL LLA with $a_s = 0.15...0.17$

Photon Cross Section versus |t|

Needs more precise data & investigation of higher order effects

DVCS – Control Plots

170

190

Coplanarity [deg]

□ "DVCS" = ? DVCS + BH + Interference + VM

 \square "BH" = Bethe-Heitler process

□ "DISS.P" = proton dissociation ~ 11 + 6 % for $M_Y < 1.6 \text{ GeV}$

Detector response & backgrounds well-understood

DVCS – H1 versus ZEUS

□ H1 results consistent

fair agreement between H1 & ZEUS