16 April 2004

DIS 2004, Slovakia

- Summary
- Experimental analysis and results

Introduction

Substructure dependence of jet cross sections at HERA and determination of α_s

Matthew Wing (Bristol University)

(On behalf of the ZEUS collaboration)

Introduction

The substructure of jets can provide:

- information on the hadronisation process.
- separation of samples enriched in quark- and gluon-initiated jets
- separation of samples of different subprocesses
- information on the underlying parton dynamics
- an opportunity to extract α_s

Jet substructure

Integrated jet shape $\psi(r)$ is the average fraction of the jet's transverse energy that lies inside a cone in the $\eta - \phi$ plane of radius, r:

Subjets resolved within a jet by considering all particles associated with the jet and reapplying the k_T algorithm until for all particle pairs, i, j,

$$d_{\mathrm{cut}} > d_{\mathrm{cut}} = y_{\mathrm{cut}} \left(E_T^{\mathrm{jet}} \right)^2$$

Increasing y_{cut}

Kinematic ranges

Photoproduction sample

 $Q^2 < 1 \,{
m GeV}^2$ 142 $< W_{\gamma p} < 293 \,{
m GeV}$

Inclusive jet sample:

- $E_T^{\text{jet}} > 17 \text{GeV}$
- $-1 < \eta^{jet} < 2.5$

Dijet sample:

- $E_T^{\text{jet1,2}} > 17,14 \, \text{GeV}$
- $-1 < \eta^{\text{jet1},2} < 2.5$
- $M^{jj} > 52 \text{GeV} \& |\cos \theta^*| < 0.8$

Deep inelastic scattering sample

 $Q^2 > 125 \text{GeV}^2$

Inclusive jet sample:

- $E_T^{\text{jet}} > 17 \text{GeV}$
- $-1 < \eta^{jet} < 2.5$

Similar quality of description as a function of E_T^{jet} .

Data becomes increasingly more gluon-like with increasing η^{jet} .

Measurements of jet substructure (γp)

Jet substructure in γp and DIS

by *q*-jets Jets in DIS consistent with being dominated

Jets in photoproduction and DIS similar in the rear direction

Jets in photoproduction become more gluon like with:

- increasing η^{jet}
- decreasing E_T^{jet}

Quark-enriched (narrow jets): $\psi(r = 0.3) > 0.8$ and/or $n_{subjet}(y_{cut} = 5 \cdot 10^{-4}) < 4$ Gluon-enriched (broad jets): $\psi(r = 0.3) < 0.6$ and/or $n_{subjet}(y_{cut} = 5 \cdot 10^{-4}) \ge 6$

Separation of quark and gluon jets

Broad jets: 15(12)% gg, 50(47)% qg, 35(41)% qq from PYTHIA (HERWIG)

Measurements of $d\sigma/d\eta^{\text{jet}}$ in γp

Measurements of $d\sigma/d\eta^{\text{jet}}$ in DIS

Broad-broad and narrow-narrow jets

Asymmetric distribution: t-channel g exchange and u-channel q exchange.

 $\alpha_s(M_Z)$

Summary

Method for enrichment of samples of quark and gluon jets has been demonstrated.

Cross section variables show characteristics of enrichment of particular

sub-processes.

An accurate measurement of α_s has been performed.