Beauty Production in DIS

- Motivation
- Theory Predictions

Katarzyna Wichmann, UNI HH

- Beauty Tagging
- Results
- Summary

Beauty Physics Motivation

- Heavy quark production:
 - test of QCD
 - probing photon, proton structure
- Heavy quark masses:
 - hard scale for calculations
 - multi-scale problem
- Studying non-perturbative issues such as fragmentation

Beauty puzzel still present...

What about ep data?

pQCD Calculations & Monte Carlos

NLO Calculations on the market:

Fixed order (massive) scheme

- massive b quark produced via BGF
- u,d,s,c active flavours in p and γ
- applicable for $p_T \sim m_b$

Resummed (massless) scheme

- massles heavy quarks
- u,d,s,c,b active flavours in p and γ
- applicable for p_T ~ m_b

Matched Calculations (FONLL)

→ FMNR (PhP) HVQDIS (DIS)

- Parton shower with DGLAP evolution MC models:
 - AROMA, RAPGAP, PYTHIA, HERWIG
- Parton shower with CCFM evolution MC models:
 - CASCADE

Katarzyna Wichmann, **UNI HH**

Beauty Event Topology in ZEUS

study beauty production with semileptonic B decay: $ep \to \ eb\overline{b} \ X \to e \ \mu^{\pm} \ jet \ X$

Event Selection

- Data sample: ZEUS 99-00 e⁺p, 72.4 pb⁻¹
- Standard DIS Selection in kinematic range:

 $Q^2 > 2 \text{ GeV}^2$, 0.05 < y < 0.7

• Muon Cuts:

-0.9 < η^{μ} < 1.3 and p_{T}^{μ} > 2 GeV (Barrel Muon Chambers region)

-1.6 < η^{μ} < -0.9 and p^{μ} > 2 GeV (Rear Muon Chambers region)

• Jet Cuts:

 $E_T^{Breit} > 6 \text{ GeV}, -2 < \eta^{lab} < 2.5$

Jet – Muon Association:

associated jet: E_T^{Breit} > 4 GeV

after all selection cuts 941 events remains

Extraction of beauty fraction (1)

- after all selection cuts data sample is a mixture of several processes:
 - semi-leptonic decays of beauty hadrons
 - semi-leptonic decays of charm hadrons

muon

- in-flight decays and fake muons
 from light quarks
- **p**_T^{rel} method to tag beauty

jet axis /

 $p_{\rm T}^{\rm rel}$ fit of different flavour MC to data

Katarzyna Wichmann, UNI HH

Extraction of beauty fraction (2)

- extraction depends on proper MC simulation for all processes
- cross-checked with data, using inclusive DIS data with at least one hard jet in Breit frame
- p_T^{rel} calculated for tracks passing muon selection criteria
- compared to light and charm MC
- shape generally well described
- difference between data and MC contained in systematic error obtained by reweighting amount of charm contribution in the fit

• beauty fraction extracted from $\mathbf{p}_{\mathrm{T}}^{\mathrm{rel}}$

$$f_{b} = (30.2 \pm 4.1) \%$$

• p_T^{rel} well described by mixed MC

Data – MC Comparison

muon and jet variables ۲ well described by MC samples weighted by extracted beauty fraction

Katarzyna Wichmann, UNI HH

QCD Prediction: NLO Calculations

The calculation of the NLO QCD predictions proceeds in three steps:

- PhP: FMNR, DIS: HVQDIS: $\gamma^*g \rightarrow bb$, $\gamma^*g \rightarrow bbg$, $\gamma^*q \rightarrow bbq$, etc.
- Fragmentation of the b-quark into a B-meson
- Semileptonic decay of the B-meson

Total Cross Section

ZEUS results: 99/00, ~ 72.4 pb-1 corrected for radiative effects (HERACLES) σ (ep \rightarrow e bb X \rightarrow eJet μ X) kinematic region: $O^2 > 2 \text{ GeV}^2$, 0.05 < v < 0.7 at least one jet in Breit frame with: $E_{\rm T}^{\rm Breit} > 6~GeV, -2 < \eta^{\rm lab} < 2.5$ at least one muon with: $-0.9 < \eta^{\mu} < 1.3, p_{\pi}^{\mu} > 2 \text{ GeV}$ -1.6 < η^μ < -0.9, p^μ > 2 GeV

Measured Cross Section: $\sigma = 40.9 \pm 5.7$ (stat.) +6.0 -4.4 (syst.) pb

> **NLO QCD (HVQDIS)** $\sigma = 20.6 + 3.1 - 3.1 \text{ pb}$ **Cascade (CCFM) σ** = **28 pb RAPGAP (DGLAP) σ** = **14 pb**

NLO prediction is about 2.5 standard deviation lower than measured cross section

Katarzyna Wichmann, UNI HH

Differential Cross Sections

- differential cross sections calculated in the same kinematic region
- f_b extracted in each bin
- NLO agrees well with the data except for lowest Q² and lowest x bins
- the same behavior for CASCADE
- RAPGAP below the data

Katarzyna Wichmann, UNI HH

Differential Cross Sections

- NLO agrees well with the data except for lowest p_T^μ
 and highest η^μ values were it lies about 2 standard deviations below the data
- similar behavior for
 CASCADE (better agreement for high η^μ)
- RAPGAP below the data

Katarzyna Wichmann, UNI HH

Differential Cross Section

- NLO agrees well with the data except for highest
 E_{T,jet} Breit values were it lies about 2 standard deviations below the data
- **CASCADE** reproduces cross section well
- RAPGAP below the data

- b-quark production in DIS measured for the first time
- consistent with NLO QCD
- regions in phase space defined where NLO lies below the data

NLO QCD Uncertainties

Summary & Conclusions

- Beauty production measured in DIS for the first time
 - visible cross section and differential cross sections are compared with NLO calculations and MC simulations
- NLO prediction consistent with the data but lies 2.5 standard deviations below
- RAPGAP MC well below the data
- CASCADE (CCFM) describes the data well except for low Q², low x and low $p_{_T}{}^{\mu}\,$ values
- NLO describes data well except for low Q^2 , low x, low p_T^{μ} , high
 - η^{μ} and high $E_{T,jet}^{Breit}$ values

