Searches for squarks with H1 at HERA

Anja Vest I. Physikalisches Institut RWTH Aachen

On behalf of the H1 Collaboration

DIS workshop, April 15, 2004

- ▷ SUSY and *R*-Parity
- \triangleright Phenomenology of ${R \hspace{-.05cm}/}_p$ SUSY in $e^{\pm}p$ scattering
- Squark decays & R_p SUSY results (DESY-04-025)
 - MSSM exclusion limits
 - mSUGRA exclusion limits

- Bosonic stop decay: Interpretation & exclusion limits (final results)
- Summary and outlook

Supersymmetry (SUSY)

SM particles	spin	SUSY partners	spin
q_L , q_R	$\frac{1}{2}$	$ ilde{q}_L$, $ ilde{q}_R$	0
l_L , l_R	$\frac{1}{2}$	\tilde{l}_L , \tilde{l}_R	0
γ, Z^0, W^{\pm}	Ī	$\int \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0$	$\frac{1}{2}$
$h^0, H^{\pm}, H^0, A^0 \int$	0	$\left(\begin{array}{c} \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm} \end{array} \right)$	$\frac{\overline{1}}{2}$
g	1	\tilde{g}	$\frac{\overline{1}}{2}$

$\underline{\text{MSSM:}}\ 105$ parameters, but

- The masses and couplings of $\tilde{\chi}_i^0$, $\tilde{\chi}_j^{\pm}$ and \tilde{g} are determined by the parameteres μ , tan β , M_2
- Gaugino mass parameters M_1 , M_2 , M_3 unify to $m_{1/2}$ at the GUT scale
- Sfermion masses are free parameters

mSUGRA model:

- $-m_0 (m_{1/2})$ common mass for scalar fields (gauginos) at the GUT scale
- REWSB ightarrow model completely determined by $m_0, \, m_{1/2}, \, aneta$, sign $\mu, \, A_0$

R-Parity and R-Parity violation

Definition:

$$R_P = (-1)^{3B+L+2S}$$

 $\rightarrow R_P = 1$ for all SM particles $\rightarrow R_P = -1$ for all SUSY particles

• The MSSM is R_P -conserving

 \rightarrow all SUSY particles are produced in pairs

 \rightarrow the LSP is stable (candidate for cold dark matter)

The superpotential in the general MSSM has additional \mathbb{R}_p terms:

→ Resonant production of single SUSY particles

 \rightarrow SUSY particles can decay into SM particles (\Rightarrow LSP no more stable)

Phenomenology of \mathcal{R}_p SUSY in $e^{\pm}p$ scattering at HERA

Production of squarks (\tilde{q}) in *s*-channel via λ'_{ijk} with masses up to \sqrt{s} 94–97 and 99/00: ~ 106 pb⁻¹ $e^+p \Rightarrow \lambda'_{1j1}$: $e^+d \longrightarrow \tilde{u}_L, \tilde{c}_L, \tilde{t}_L$ 98/99: ~ 14 pb⁻¹ $e^-p \Rightarrow \lambda'_{11k}$: $e^-u \longrightarrow \tilde{d}_R, \tilde{s}_R, \tilde{b}_R$

Signature: high $P_T e(\nu)$ + jet \Rightarrow look for NC (CC) –like events at high P_T

 \rightarrow only \tilde{d}^k_R (e^-p collisions) can decay to u q

Squark gauge decay into quark + gaugino

$$\tilde{q} \to \tilde{\chi}_i^0 q \qquad \tilde{q} \to \tilde{\chi}_i^{\pm} q' \qquad \tilde{q} \to \tilde{g}q$$

Subsequent gaugino decay:

 $\rightarrow \mathbb{R}_p$ gaugino decays into 2 quarks $+(e^{\pm} \text{ or } \nu_e)$ $\rightarrow \tilde{\chi}_i^0$ with i > 1, \tilde{g} decays into lighter $\tilde{\chi}$ and 2 fermions

 \Rightarrow Large variety of decay modes with lepton(s) + multiple jets

Squark decay modes

Channel	Decay process	Event topology
eq	$\tilde{q} \xrightarrow{\lambda'} eq$	high $p_T \; e+1$ jet
u q	$ ilde{d}^k_R \xrightarrow{\lambda'} u_e d$	missing p_T+1 jet
$e^{\pm}M\!J$	$ \begin{array}{cccc} \tilde{q} \to qX & X \xrightarrow{\lambda'} e^{\pm} \bar{q}q \\ & X \to q\bar{q} & Y \\ & Y \xrightarrow{\lambda'} e^{\pm} \bar{q}q \end{array} $	e (both charges) + multiple jets
u MJ	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	missing p_T $+$ multiple jets
el MJ	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$e \\ + \ell \ (e \ {\sf or} \ \mu) \\ + \ {\sf multiple} \ {\sf jets}$
νlMJ	$ \begin{array}{cccc} \tilde{q} \to qX & X \to \ell \nu_{\ell} Y \\ & X \to \nu \bar{\nu} Y \\ & X \to \mu^{+} \mu^{-} Y \\ & Y \xrightarrow{\lambda'} \nu \bar{q}q, e\bar{q}q \end{array} $	$\ell \ (e \ { m or} \ \mu) \ + \ { m missing} \ p_T \ + \ { m multiple} \ { m jets}$

 e^+p collisions

almost full coverage of BR's !

Gauge decay into quark + gaugino: H1 e^+p analysis

eMJ + X selection

 $P_T^e > 6 \, {\rm GeV}, \ {\rm high} \ y_e$ angular cuts

 $\nu MJ + X$ selection

 ${\not\!\!P_T}>26\,{\rm GeV}$

Squark decay modes

Channel	Event topology	e^+p data (SM)	e^-p data (SM)
eq	high $p_T \; e + 1$ jet	$632~(628 \pm 46)$	$204~(192 \pm 14)$
$ \nu q $	missing p_T+1 jet	_	$261~(269 \pm 21)$
$e^{\pm}M\!J$		e^+MJ :	e^+MJ :
	e (both charges)	$72~(67.5\pm9.5)$	$20~(17.9\pm2.4)$
	+ multiple jets	$e^{-}MJ$:	$e^{-}MJ$:
		$0~(0.20\pm 0.14)$	$0~(0.06\pm 0.02)$
u MJ	$\begin{array}{c} missing p_T \\ + multiple jets \end{array}$	$30~(24.3\pm 3.6)$	$12~(10.1 \pm 1.4)$
el MJ	$e + \ell \ (e \ {\sf or} \ \mu) + {\sf multiple}$ jets	eeMJ:	eeMJ:
		$0~(0.91\pm 0.51)$	$0~(0.13\pm 0.03)$
		$e\mu MJ$:	$e\mu MJ$:
		$0~(0.91\pm 0.38)$	$0~(0.20\pm 0.04)$
νlMJ	$\ell \ (e \ { m or} \ \mu) \ + { m missing} \ p_T \ + { m multiple} \ { m jets}$	νeMJ :	νeMJ :
		$0~(0.74\pm 0.26)$	$0~(0.21\pm 0.07)$
		$ u \mu MJ$:	$ u \mu MJ$:
		$0~(0.61\pm 0.12)$	$0 \ (0.16 \pm 0.03)$

all decay modes checked in detail \Rightarrow **no deviation from SM expectation**

Interpretation of the data in the MSSM

relevant SUSY parameters:

 M_2 , μ , aneta, λ'_{1jk} , $M_{ ilde q}$

Squark masses and couplings are free parameters

$$\Rightarrow$$
 set limits on λ'_{1jk} vs. $M_{ ilde{q}}$

⇒ SUSY parameter scan

$$\label{eq:basic} \begin{split} &\tan\beta = 6 \\ -300 < \mu < 300 \, {\rm GeV} \\ -70 < M_2 < 350 \, {\rm GeV} \end{split}$$

Interpretation of the data in the mSUGRA model

Only five parameters: $\tan \beta$, $m_{1/2}$, m_0 , A_0 , sign μ

HERA sensitivity follows isomass curve:

```
\tilde{u}, \tilde{c}, \tilde{t} excluded up to 275 \,\mathrm{GeV};
```

 $ilde{d}$, $ilde{s}$, $ilde{b}$ excluded up to $285\,{
m GeV}$

mSUGRA limits

Large part of SUSY parameter space excluded for small $\tan\beta$ by MSSM Higgs search at LEP

exclusion limits assuming $m_0 = m_{1/2} = M$ vs. $\tan \beta$:

Bosonic stop decay $ilde{t} ightarrow ilde{b} W$

In the third generation: M_q not negligible \Rightarrow large mixing between \tilde{q}_L and \tilde{q}_R :

$$\begin{pmatrix} \tilde{q}_1 \\ \tilde{q}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_{\tilde{q}} & \sin \theta_{\tilde{q}} \\ -\sin \theta_{\tilde{q}} & \cos \theta_{\tilde{q}} \end{pmatrix} \begin{pmatrix} \tilde{q}_L \\ \tilde{q}_R \end{pmatrix}$$

 $\tilde{q} = \tilde{b}, \tilde{t}$: presumably the lightest squarks

$$\begin{split} M_{\tilde{b}} < M_{\tilde{t}} \mbox{ (different from 'usual' MSSM)} \\ \tilde{q} \not\to q' \tilde{\chi} \mbox{ (kinematically not accessible)} \end{split}$$

$$ightarrow$$
 bosonic stop decay $ilde{t}
ightarrow ilde{b} W$

 $heta_{ ilde{t}}$ and $heta_{ ilde{b}}$ are free parameters

Signature: 3 jets + \mathbb{P}_T or jet + $\ell + \mathbb{P}_T$

 \longrightarrow high P_T lepton events observed at H1

Interpretation of these events as decay products from bosonic stop decays (T. Kon et al., Mod. Phys. Lett. A12 (1997) 3143)

kinematic range: $M_{\tilde{t}} > M_{\tilde{b}} + M_W$

virtual W decay strongly suppressed & the direct R_p decay $\tilde{t} \to ed$ dominates for $M_{\tilde{t}} \lesssim M_{\tilde{b}} + M_W$

Bosonic stop decay: H1 analysis

typical efficiencies: 30 - 50%

 \rightarrow slight excess in $j\mu P_T$ channel but no significant deviation from SM expectation

DIS workshop, April 15, 2004 12

Bosonic stop decay: Interpretation of high P_T lepton events

For each channel: calculate cross section $\sigma_{\tilde{t}}(M_{\tilde{t}}) = \frac{N_{Data} - N_{SM}}{\epsilon \cdot BR \cdot \mathcal{L}}$

- Slight discrepancy between data and SM only observed in the $j\mu P_T$ channel but not confirmed in the $jjjP_T$ or jeP_T channels

 \Rightarrow The high P_T lepton candidates cannot be interpreted as scalar tops.

⇒ Set limits on SUSY parameters!

SUSY parameter scan

 \rightarrow scan also: $M_{\tilde{b}}$ and the mixing angles $\theta_{\tilde{t}}$ (relevant for production cross section) $\theta_{\tilde{b}}$ (relevant for bosonic stop decay)

ightarrow Stop masses up to $\sim 275\,{
m GeV}$ excluded for $\lambda_{131}^\prime=0.3$

Summary & outlook

• Squarks have been searched for in all e^+p and e^-p H1 data ($\mathcal{L}_{int} \approx 120 \, \text{pb}^{-1}$)

\Rightarrow no evidence for squark production found

• Limits were derived in the SUSY parameter space

 \Rightarrow Squark masses up to 275 GeV (\tilde{u}^j) and 285 GeV (\tilde{d}^k) excluded for $\lambda'_{1jk} = 0.3$

mSUGRA limits (on m_0 , $m_{1/2}$) are competitive to LEP and TeVatron

• Complementary analysis: bosonic stop decay

A slight excess in the $j\mu P_T$ channel is observed, but no evidence for stop production found

- \Rightarrow The high P_T lepton events observed at H1 cannot be interpreted as stops.
- Stop masses up to $\sim 275\,{
 m GeV}$ excluded for $\lambda_{131}^\prime = 0.3$

Summary & outlook

Outlook

• HERA II:

– polarised e^{\pm} beams:

$$e_R^+ + d_L \to \tilde{u}_L^j$$
$$e_L^- + u_L \to \tilde{d}_R^k$$

needed for \mathcal{R}_p SUSY searches at HERA II

- higher luminosity: $\sim 1~{\rm fb^{-1}}$ per experiment

