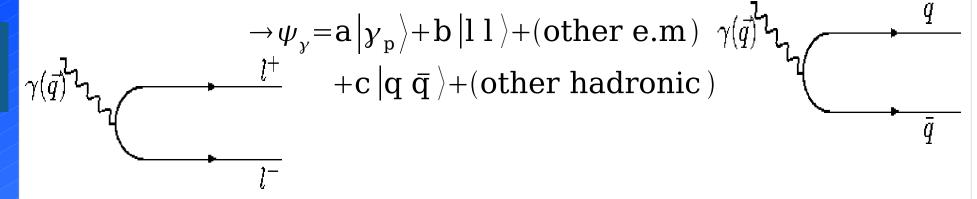

Light-cone wave function of the photon

Justyna Ukleja, Warsaw University for ZEUS Collaboration

DIS04, 15.04.2004


Motivation

The LCWF is an important aspect of structure functions and distribution amplitudes of many different processes,

- > it is frame independent,
- > it is useful for understanding exclusive processes,
- > the electromagnetic part is calculable in QED,
- the hadronic part of the photon LCWF is model depended.

Measurements of the photon light-cone wave function

is the probability amplitude to find a component with a given momentum in the momentum space

- \succ is the solution of the Hamiltonian $H_{LC}^{QCD} |\psi_{\gamma}\rangle = M_{h}^{2} |\psi_{\gamma}\rangle$
- \succ is usually tested through measurements of form factors

Measurements of the photon light-cone wave function

The LCWF for the lowest Fock states:

$$\psi_{\lambda_{1}\lambda_{2}}^{\lambda}(\mathbf{k}_{\perp},\mathbf{u}) = -\mathbf{e} \,\mathbf{e}_{1} \frac{\overline{l_{\lambda_{1}}(\mathbf{k})\lambda \cdot \epsilon^{\lambda} l_{\lambda_{2}}(\mathbf{q}-\mathbf{k})}}{\sqrt{u(1-u)}(\mathbf{Q}^{2} + \frac{\mathbf{k}_{\perp}^{2} + \mathbf{m}^{2}}{u(1-u)})} \qquad \begin{array}{c} \gamma(q) \\ \gamma(q) \\$$

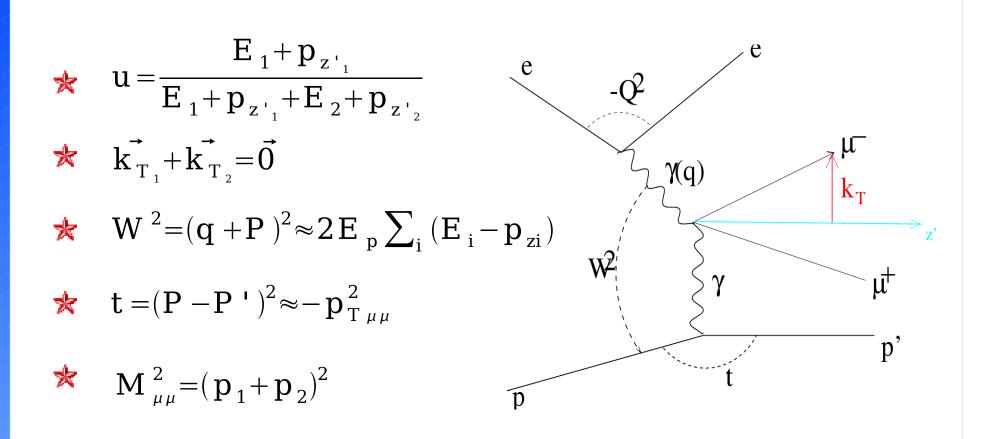
Longitudinal light-cone momentum fraction:

$$u_{i} = \frac{k_{i}^{+}}{p^{+}} = \frac{k_{i}^{0} + k_{i}^{z}}{p^{0} + p^{z}}$$

$$\sum_{i=1}^{n} u_{i} = 1$$

 $\mathcal{H}(L_{\lambda})$

-+ 7'


Transverse momentum: \vec{k}_{\perp}

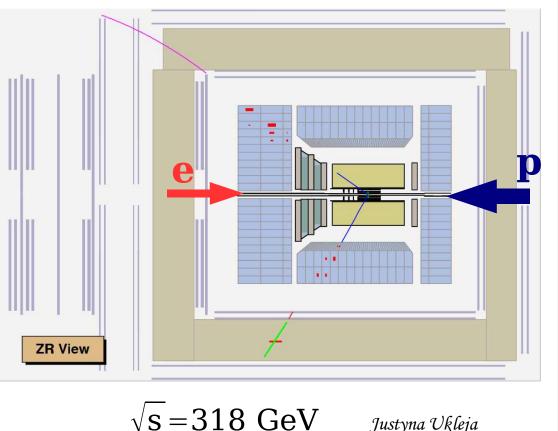
$$\sum_{i=1}^{n} k_{\perp_i} = \vec{0}$$

Electromagnetic and hadronic LCWF

For $k_{\perp}^2 \gg \Lambda_{\text{OCD}}^2$ the **hadronic** $|q \bar{q}\rangle$ LCWF is expected by pQCD to be the same as for the **electromagnetic** $|ll\rangle$: For the transversely polarized photons: $\phi_{1\bar{1}/\gamma_{T}^{*}}^{2}(\mathbf{u},\mathbf{k}_{\perp}) \sim \sum_{\mu=1}^{2} \frac{1}{4} \operatorname{Tr} \psi_{\gamma^{*}}^{2} = \frac{m_{1}^{2} + k_{\perp}^{2} [u^{2} + (1-u)^{2}]}{[k_{\perp}^{2} + a_{1}^{2}]^{2}} \frac{3.5}{\phi_{\gamma^{*},3}^{2}}$ $-0^2=5, m=0$ $Q^2 = 0, m = 0$ $Q^2 = 0, m = 1.5$..., Asymptotic 2.5 $a_1^2 = m_1^2 + Q^2 u (1-u)$ 2 For the longitudinally 1.5 polarized photons: 0.5 $\Phi_{f\bar{f}/\gamma_{L}^{*}}^{2} \sim \frac{Q^{2}[u^{2}(1-u)^{2}]}{[k^{2}+a^{2}]^{2}}$ 0 0.10.20.30.40.50.60.70.80.9 U Justyna Ukleja DIS04, 15.04.2004

LCWF - variables

LCWF – QED component

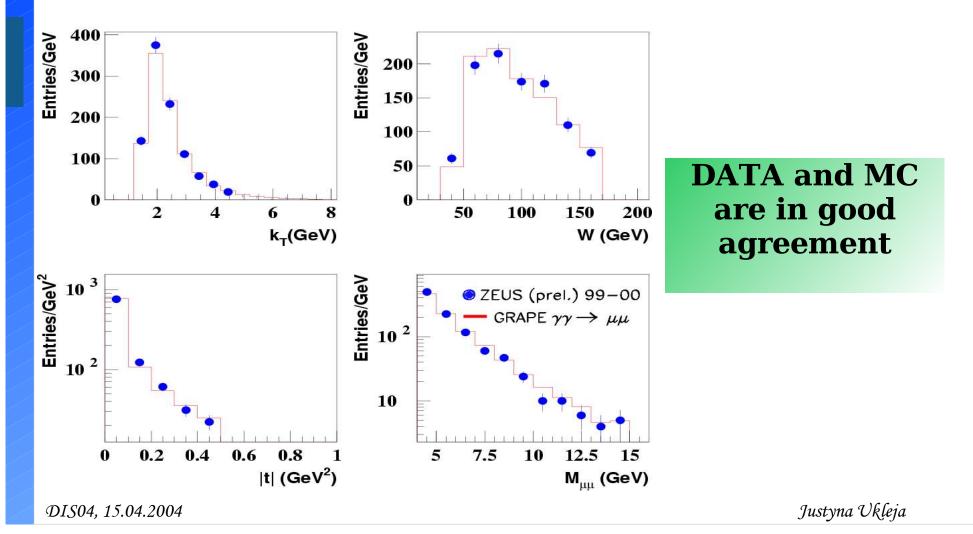

<u>γγ — μμ</u> * Photoproduction (electron undetected)

★ Proton undetected

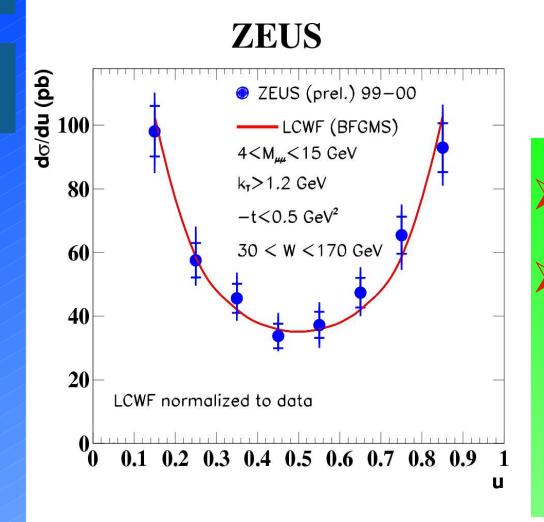
 \star Only 2 μ in detector

* Diffractive (small t)

★4 <M μμ<15 GeV



Justyna Ukleja


DIS04, 15.04.2004

Kinematical variable distributions for the LCWF

ZEUS

The electromagnetic component of the LCWF of the photon

Brodsky, Frankfurt, Gunion, Muller, Strikman (BFGMS)

 Measured are in agreement with QED
Results provide the first proof that diffractive production of
particles can be reliably used to measure the photon LCWF

DIS04, 15.04.2004

Summary

- The electromagnetic component of the photon LCWF has been measured and is in agreement with QED.
- This provides the first proof that diffractive production of particles can be reliably used to measure the photon LCWF.