XII International Workshop on Deep Inelastic Scattering

Strbské Pleso, Slovakia, 14-18 April 2004

Beauty Photoproduction at ZEUS

Monica Turcato Padova University and INFN on behalf of the ZEUS Collaboration

ter channel ♦ μ ♦

- $P^* + \mu$ channel
- snoisulonoD 🔶

t007/t/SI

:əniltuO

- enoitevitoM 🔶
- Experimental situation

12/t/500t

Motivations

The study of b production is important because:

- * it helps in understanding the structure of the proton and of the photon;
- \clubsuit the heavy b quark mass provides a hard scale that makes pQ CD

ARAH ts noitoes are d

toSIC

The previous ZEUS measurement...

- $p_p^L > 5$ GeV, $|\eta^b| < 2$
- $Q^2 < 1$ GeV, 0.2 < y < 0.8

and compared to NLO QCD predictions.

Measurement somewhat above the NLO QCD prediction.

...but large statistical and systematic uncertainties

- Leading Order + Parton Shower models available, including flavour excitation
- CCFM evolution with k_T factorisation (CASCADE)
- Theoretical calculations: Full NLO calculation (FMNR) available

Dijet+µ analysis Data sample: 110 pb⁻¹

Muon selection: at least 1 muon with $p^{\mu} > 4 \text{ GeV}$, $p^{\mu}_{T} > 1.5 \text{ GeV}$, $1.5 < \eta^{\mu} < 2.3$ $p^{\mu} > 2.5 \text{ GeV}$, $-0.9 < \eta^{\mu} < 1.3$ $0.9 < 0.9 < \eta^{\mu} < 2.3$ DIS rejection: $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.8At least 2 jets: $p_T^{\text{jet1,2}} > 7, 6 \text{ GeV}$, $|\eta^{\text{jet1,2}}| < 2.5$ K_T algorithm, long. invariant, E recomb. scheme

Control plots

Data compared to the PYTHIA MC, contributions from *b*, *c* and LF mixed accordingly to the PYTHIA cross section, and normalized to the data. Good agreement between data and Monte Carlo.

Signal extraction

of Ω_T^{rel} distribution of beauty taken from the PTHIA Monte Carlo

mort beninted buckground obtained from ^{T}d

Background p_T^{rel} distribution

A sample of data with two jets and no muon requirements was selected.

The p_T^{rel} distribution was obtained using all the tracks satisfying the same momentum and angle requirements of the muon.

Monte Carlo underestimates the data at high preli

 \rightarrow correction applied to the LF Monte Carlo to reproduce the data p_T^{rel} distribution

SU3

b fraction in the data

:uonu regions of good acceptance for the b fraction determined in the three

REARC:
$$f_b = 15\%$$

 $p^{\mu} > 2.5 \text{ GeV}, -1.6 < \eta^{\mu} < -0.9$
BARREL: $f_b = 25\%$
HORWARD: $f_b = 21\%$
 $p^{\mu} > 4 \text{ GeV}, p^{\mu}_T > 1.5 \text{ GeV},$
 $1.5 < \eta^{\mu} < 2.3$

Cross sections determination

All the cross sections were determined in the kinematic region defined by: $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.8

 $p_{jet1,2}^{(1)} > 7,6 \text{ GeV}, |\eta_{jet1,2}^{(1)}| < 2.5$

for hadron level jets reconstructed before the B hadron decay.

All the acceptance corrections have been determined using the PYTHIA Monte Carlo, reweighted so that the p_T^b distribution was in agreement with the NLO QCD predictions.

The main systematic uncertainties arise from: the uncertainty on the muon chambers efficiencies the uncertainty on the shape of the background p_T^{rel} distribution.

MC models and NLO QCD calculations

NLO QCD: FMNR:

- GRVG-HO for γ , CTEQ5M for p;
- $\mathfrak{W}^{q} = \mathfrak{Y}^{-1}\mathfrak{Z} \mathfrak{G}\mathfrak{G}\Lambda$, $\mathfrak{M} = \mathfrak{M} = \sqrt{\langle \mathfrak{G}_{q}^{L} \rangle_{2} + \mathfrak{M}_{2}^{-1}}$
- jets done running k_T on partons;
- parton level jets corrected to hadron level using
 PYTHIA and HERWIG: from 20% (rear region)
- to 3% (large p_T^{μ})
- $b \to B$ fragmentation with Peterson,
- ; c = 0.035;
- $B \rightarrow \mu$ according to PVTHIA.

Uncertainty on NLO calculations:

- $m_b = 4.5 \text{ GeV}, \ \mu = m_T/2 \rightarrow m_b = 5.0 \text{ GeV},$
- $\mu = 2m_T$: variations from +34% to -22%;
- $\mathbf{E} = 0.0020 \rightarrow \mathbf{E} = 0.0055$,
- Peterson to Kartvelishvili: $\pm 3\%$;
- different parton densities and $\Lambda^{(5)}_{OCD}$: $\pm 4\%$.

:2.9 AIHTY4

- includes direct, resolved and flavour excitation
- *b*-quark string fragmentation with Peterson, s = 0.0041;
- branching-ratios for b decay, $b \rightarrow \mu X$ and via cascade, taken from the PDG;
- $B \rightarrow \mu$ momentum spectrum checked with

CASCADE 1.1:

- k_T factorisation;
- CCFM evolution for the proton parton densities;
- Peterson fragmentation, $\varepsilon = 0.0041$.

µ kinematic region:

ІН цим оѕів изшээл8в эзіи рир…

t007/t/SI

SUJS

h-jet cross sections

µ kinematic region: as for the visible cross sections

b-jet cross sections µ-jet cross sections extrapolated for µ decay and BR using PYTHIA

Good agreement between data, NLO and MC for both µ-jet and b-jet cross sections.

Beauty fraction extracted by fitting the ΔR and $\Delta \phi$

 $D_* + \mu$ analysis

Search for b in the reaction

Unlike–sign D* and µ coming from the same b parent are mainly produced in the same emisphere. *12/t/500*

Results

 Q^2 (GeV²) 10₅ 10 $\downarrow \downarrow \leftarrow d H d \rightarrow \downarrow$ ਰ(b or b̄, rap. ζ^b<1) (nb) ਯ ਹੋ ਯੋ ਨੇ ਲ ארס מכם 🗕 **SU3** p_tb (GeV) 12 14 5 4 6 8 10 0 0.02 **70.0** h+5jets accept. 90'0 h+D* acceptance

Cross section evaluated for the process $\gamma p \rightarrow b(\bar{b})X$, for *b* or \bar{b} production (avoid problems due to correlation) and extrapolated to the kinematic region defined by: $\zeta^b < 1$, $Q^2 < 1$ GeV² $0.05 < \gamma < 0.85$ no cuts on p_T^b : fo be compared to a NLO prediction (FMMR) of to be compared to a NLO prediction (FMMR) of

momenta.

Beauty and charm very well separated \rightarrow very low background contamination. Analysis sensitive to very low *b* quark transverse

\cdots stuəшəлnspəш SNBZ әүt fo Λ лршшnS

Good agreement with the previous ZEUS publication Good agreement with the previous ZEUS publication

conclusions

The beauty photoproduction cross section has been measured at ZEUS using both muon plus D^* events.

In the muon plus dijet channel, differential cross sections for muons , μ -jet and b-jet have been evaluated and compared to Monte Carlo models and NLO QCD predictions.

In all the cases very good agreement has been found between data and NLO QCD.

A *b*-quark cross section has been obtained, extrapolating the visible measurements using NLO.

In the muon plus D^* channel, ZEUS is investigating a different kinematic region, complementary in p_T^b .