Events with High P_T **Leptons and Missing P**_T **and Anomalous Top at HERA**

David South (DESY)

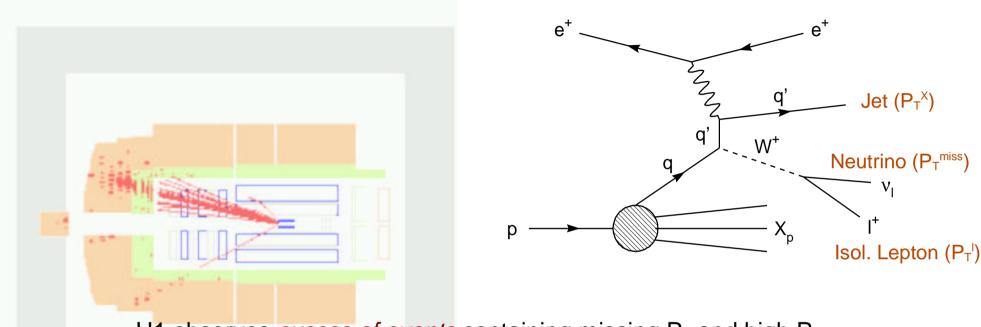
On Behalf of the H1 Collaboration

XIIth International Workshop on Deep Inelastic Scattering (DIS 2004)

Štrbské Pleso, High Tatras, Slovakia, 14th -18th April 2004

Outline

Introduction


H1 Events with Missing P_T and High P_T Leptons at HERA I

Search for Single Top Quark Production

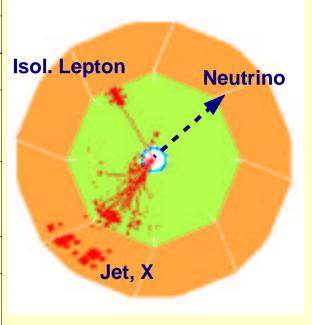
Latest H1 Results from HERA II Data

Summary and Outlook

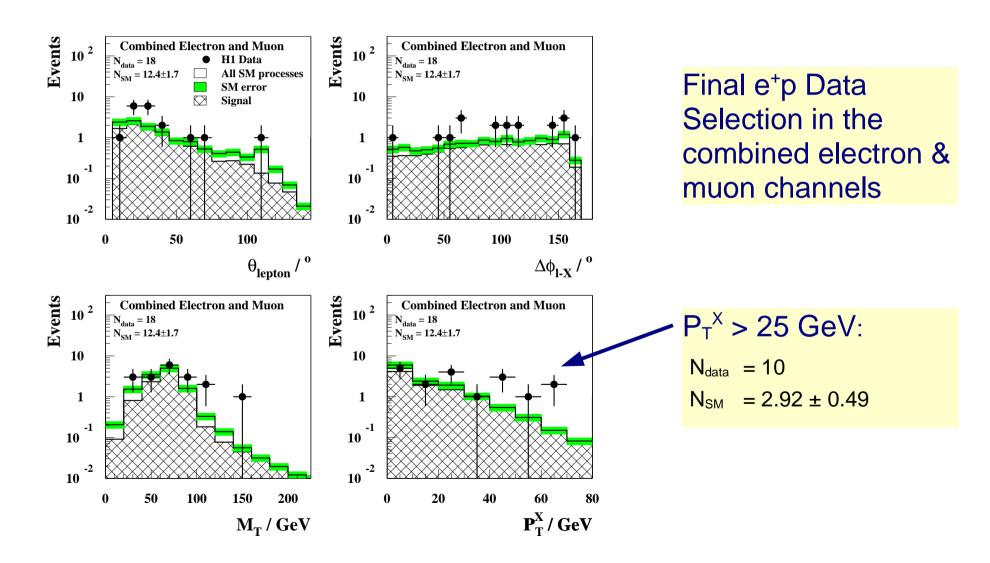
Introduction to the "Isolated Lepton" Analysis

- H1 observes *excess of events* containing missing P_T and high P_T leptons (e or μ). Full HERA I data set now published
 - → Phys. Lett. B561 (2003) 241.
- Main SM signal contribution comes from the production of real W bosons via photoproduction, with subsequent leptonic decay
- LO Cross section at HERA, σ(ep → eW[±]X) ≈ 1 pb; NLO SM W calculations performed by Schwanenberger et. al now included

Isolated Lepton Analysis – SM Background


- SM signal processes modelled by EPVEC Monte Carlo, including additional contributions from CC W production and Cabibbo-Paresi Z° production
- SM background processes include Neutral Current, Charged Current, Lepton Pair and Photoproduction – dedicated study samples of main backgrounds performed

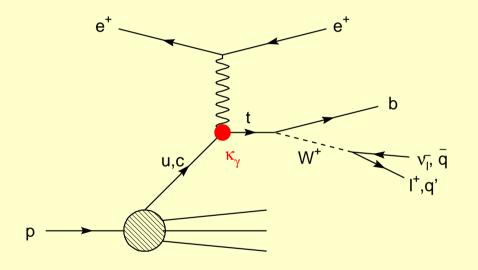
e: Neutral Current	e,μ: Charged Current	μ: Lepton Pair	
$\begin{array}{c} e(k^{\mu}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} e\left(k^{\mu}\right) & v\left(k^{\prime\mu}\right) \\ & & \\ W^{\pm}\left(q^{\mu}\right) \\ & & \\ & & \\ P\left(p^{\mu}\right) & X \end{array}$	e my T	
real electron & fake P _T ^{miss} from mismeasurement	misidentified electron/ real muon & real P _T ^{miss}	real muon & fake P _T ^{miss} from mismeasurement	


Isolated Lepton Analysis – Event Selection

Main Selection requirements include:

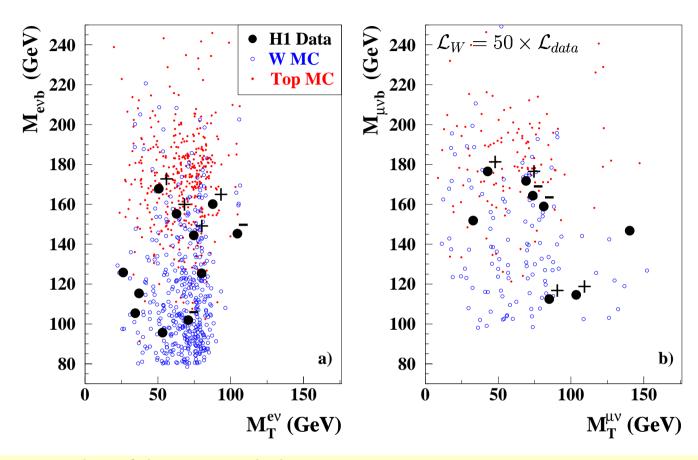
Lepton in central region of detector	$5^{\circ} < \theta_{I} < 140^{\circ}$
High lepton transverse momentum	P _T ^I > 10 GeV
Large missing transverse momentum	P _T ^{miss} > 12 GeV
Overall direction of event:	V_{ap} / V_p < 0.5
calorimetric energy sums	
Azimuthal imbalance, acoplanarity	$\Delta\phi_{ ext{e-X}} < 160^{ ext{o}}$
	$(\Delta\phi_{\mu ext{-X}} < 170^\circ)$
Longitudinal imbalance	$\delta_{ ext{miss}}\!>\!5~ ext{GeV}$
Lepton Isolation w.r.t. other parts of the	$D_{jet} > 1$,
event	$D_{\text{track}} > 0.5$

HERA I Isolated Lepton Analysis – Results


HERA I Isolated Lepton Analysis – Results

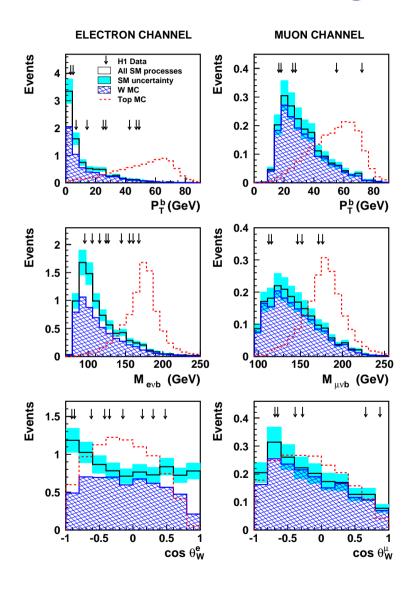
H1 e⁺p data (1994-2000), 104.7 pb ⁻¹				
Electron and Muon	H1 Data	SM Total	Signal (EPVEC)	Other SM Processes
P _T ^X < 12 GeV	5	6.40 ± 0.79	4.45 ± 0.70	1.95 ± 0.36
12 < P _T ^X < 25 GeV	3	3.08 ± 0.43	2.40 ± 0.40	0.68 ± 0.14
25 < P _T ^X < 40 GeV	4	1.83 ± 0.27	1.59 ± 0.26	0.24 ± 0.06
P _T ^X > 40 GeV	6	1.08 ± 0.22	0.96 ± 0.22	0.12 ± 0.04
H1 e ⁻ p data (1998-1999), 13.6 pb ⁻¹				
P _T ^X < 25 GeV	0	1.54 ± 0.20	0.93 ± 0.16	0.61 ± 0.13
P _T ^X > 25 GeV	1	0.52 ± 0.08	0.37 ± 0.07	0.15 ± 0.04

- . Excess observed at large values of P_T^X in e⁺p data
- Analysis of tau channel now H1 Preliminary → see talk by G.Brandt


Search for Single Top Production - Introduction

- Motivated by observed excess at high P_T^X of events in Isolated Lepton analysis
 - →The production of single top quarks with decay to b and a W boson may provide a possible explanation
- SM single top highly supressed
- Search for anomalous top production via FCNC interaction
- SM W production is dominant at low values of P_T^X, whereas the b-jet has large transverse momentum

- Study coupling between up and top quarks, K_{tuy} (neglect Z° boson exchange)
- Search covers the leptonic $(W \rightarrow lv)$ and hadronic $(W \rightarrow qq')$ decays of the W.


Search for Single Top in the Leptonic Channel

Kinematic Reconstruction of the top quark decay

- b quark reconstruction: b-jet not tagged, but reconstructed from sum of all jets
- neutrino reconstruction: apply constraint on W mass, $M_{l\nu} = \sqrt{P_l^2 + P_{\nu}^2 + 2P_lP_{\nu}} \approx \sqrt{2P_lP_{\nu}} = M_W$
- Examine invariant mass of top system, M_{IVb} versus the lepton-neutrino transverse mass, M_T^{IV}

Search for Single Top in the Leptonic Channel

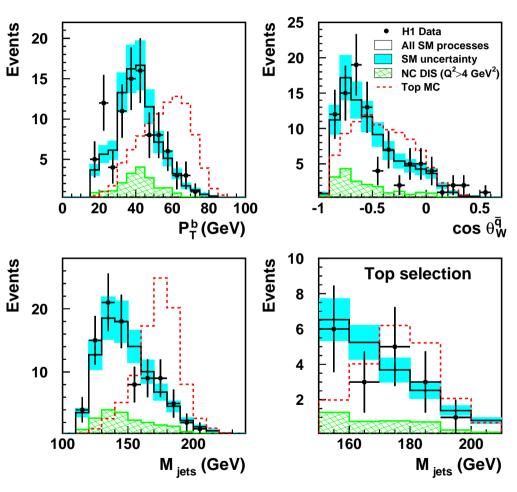
Top Preselection

- Isolated lepton events + neutrino reconstruction
- Rejection of leptons with negative charge:

$$t \rightarrow bW^+ \rightarrow bI^+\nu_1$$

top decay produces only positively charged leptons

- 9 electron events and 6 muon events
- Three discriminatory observables: P_T^b , M_{lvb} and θ_W^l


Cut-based Top Selection in Leptonic Channel

- $P_{T}^{b} > 30 \text{ GeV}$ and $M_{l\nu b} > 140 \text{ GeV}$
- Main contribution to SM prediction from W production

	Data	Standard Model
Electron Channel	3	0.65 ± 0.10
Muon Channel	2	0.66 ± 0.12
Total	5	1.31 ± 0.22

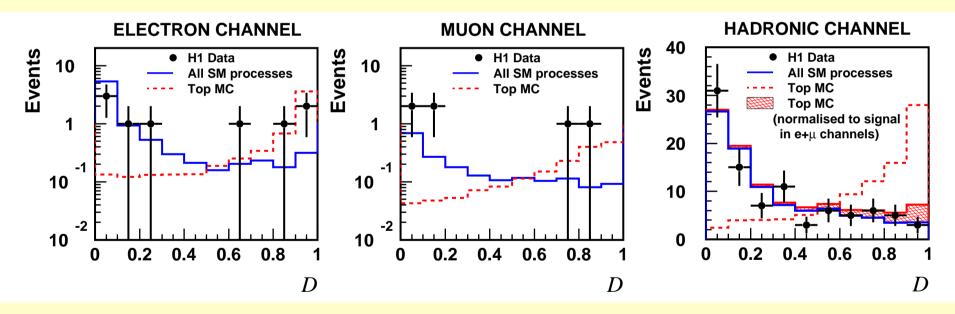
Search for Single Top in the Hadronic Channel

HADRONIC CHANNEL - TOP PRESELECTION

Top Preselection

- High transverse momentum multi-jet events, P_T^{jet1} > 40 GeV, P_T^{jet2} > 30 GeV, P_T^{jet3} > 15 GeV
- Large total transverse energy, E_Ttot > 110 GeV
- One pair of jets with 65 GeV < M_I < 95 GeV
- 92 data events, 92.4 ± 16.6 expected from SM
- Discriminatory observables analgous to leptonic channel: P_T^b, M_{jets} and θ_W^q

Cut-based Top Selection in Hadronic Channel


- $P_T^b > 40 \text{ GeV}$, 150 GeV $< M_{jets} < 210 \text{ GeV}$ and $\cos \theta_W^q > -0.75$
- Less sensitive to W Production than leptonic channel, main SM contribution from NC DIS

	Data	Standard Model
Hadronic Channel	18	20.6 ± 3.6

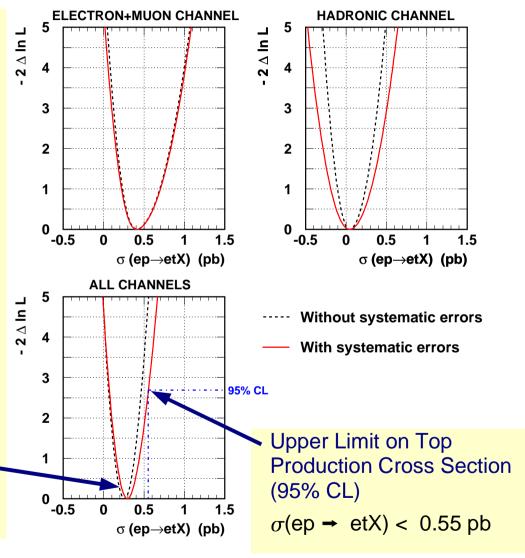
Multivariate Analysis

- Set of observables, $V = \{V_i\}$ with probability densities p_i^{signal} and $p_i^{background}$ calculated from MC leptonic channel: $V = \{P_T^b, M_{lyb}, \cos \theta_W^l\}$, hadronic channel: $V = \{P_T^b, M_{jets}, \cos \theta_W^q\}$
- Observables combined to calculate a Discriminator D(V) for each event, given by:

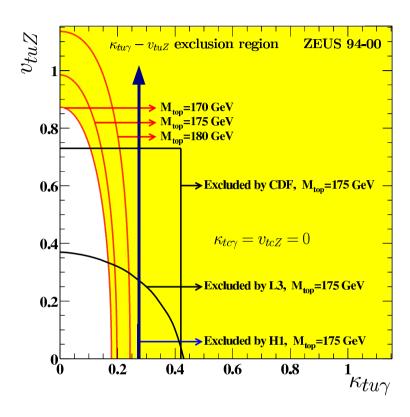
$$D(V) = \frac{P^{signal}}{P^{signal} + P^{background}} \quad \text{where} \quad P = C(V) \prod_{i} p_{i}$$

- Leptonic channel: 5 data events in cut-based analysis found in top-like region (D = 1)
- Hadronic channel: data and QCD background in good agreement
- Results in hadronic channel not in contradiction with single top hypothesis in leptonic channel

Maximum Likelihood Fit – Cross Sections


- A maximum likelihood fit is performed of the top contribution, using likelihood discriminator distributions as input
- Likelihood function:

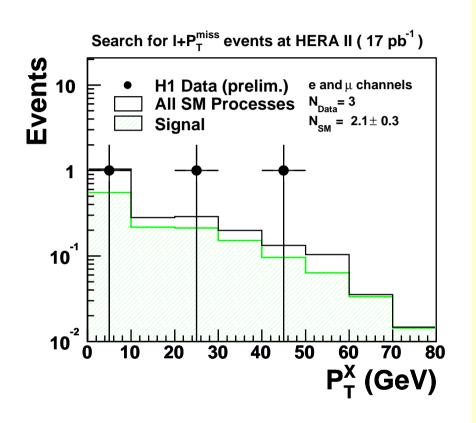
$$L = \prod_{k=1}^{n} e^{-\mu_{k}} \frac{\mu_{k}^{n_{k}}}{n_{k}!}$$


- μ_k is the sum of signal and background in bin k
- Look for minimum in negative log likelihood function $-2\Delta ln$ L as a function of top production cross section
- Leptonic and Hadronic channels found to be compatible at 1.1σ level, including systematic errors (dominant in hadronic channel)

Measured Top Production Cross Section

$$\sigma(ep \rightarrow etX) = 0.29^{+0.15}_{-0.14} pb$$

Single Top Production – Exclusion Limit

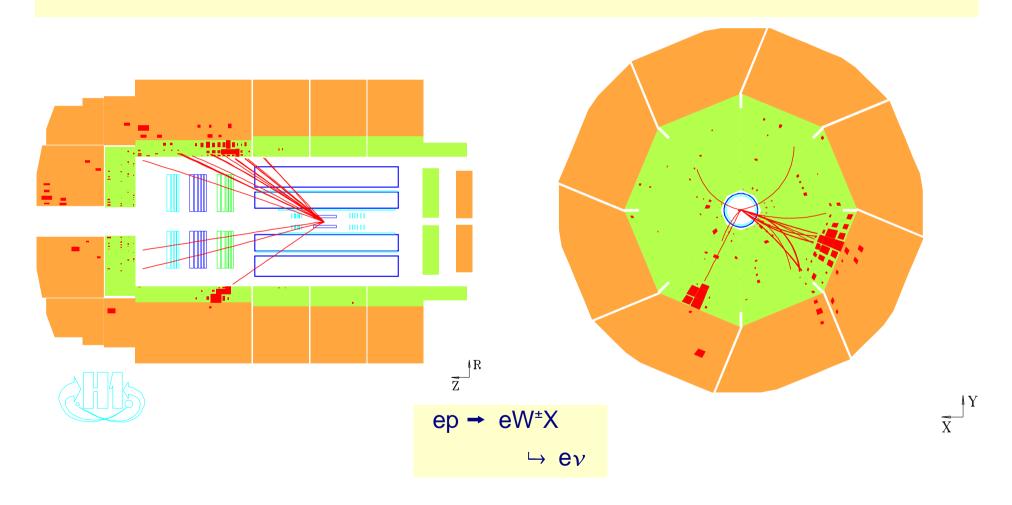

- Bound on top production cross section transformed into upper limit on anomalous tuy coupling at NLO, assuming $v_{tuZ} = 0$: $|\kappa_{tuy}| < 0.27$ (95% CL)
- This limit is competitive with ZEUS analysis (Z° contribution evaluated at LO) and with results from the LEP and CDF experiments
- H1 Single Top Analysis now published → Eur. Phys. J. C33 (2004) 9

H1 and HERA II Upgrade

- Extensive upgrade to HERA to deliver factor of 10 more luminosity - H1 also upgraded
- HERA II major data taking period underway since autumn 2003
- First HERA II analyses made preliminary for this conference, using 17 pb⁻¹ of data
- The Isolated Lepton analysis has been performed on the new HERA II data

→ See talks by:O. Henshaw, E. Sauvan and M. Peez

HERA II Isolated Lepton Analysis – Results


H1 e⁺p data (2003-2004), 17 pb ⁻¹			
	H1 Data	SM Expectation	SM Signal
Electron			
Total	3	1.61 ± 0.29	0.97 ± 0.29
P _T ^X > 25 GeV	2	0.34 ± 0.07	0.22 ± 0.05
Muon			
Total	0	0.44 ± 0.32	0.39 ± 0.08
P _T ^X > 25 GeV	0	0.29 ± 0.11	0.26 ± 0.05
Electron & Muon			
Total	3	2.05 ± 0.32	1.36 ± 0.27
P _T ^X > 25 GeV	2	0.63 ± 0.11	0.48 ± 0.10

- Three new electron candidate events observed in HERA II data (No muons yet...)
- Two events are at high values of P_T^X, where the excess was observed in HERA I data
- The higher luminosity provided by HERA II will help to clarify the origin of these events

HERA II Isolated Lepton Event Display

New High P_T^X Event with $e + P_T^{miss}$ in HERA II data:


$$P_{T}^{e} = 37 \text{ GeV}, P_{T}^{miss} = 44 \text{ GeV}, P_{T}^{X} = 29 \text{ GeV}$$

HERA II Isolated Lepton Event Display

New Elastic Event with $e + P_T^{miss}$ in HERA II data:

$$P_{T}^{e} = 47 \text{ GeV}, P_{T}^{miss} = 47 \text{ GeV}, P_{T}^{X} = 0 \text{ GeV}$$

Summary & Outlook

- Full H1 HERA I data sample analysed for events containing high P_T leptons and missing P_T, excess observed at high P_T^X
- Cut-based search for single top production yields 5 (1.31 \pm 1.22) events in the leptonic channel and 18 (20.6 \pm 3.6) in the hadronic channel
- Derived upper limits on the top production cross section and the anomalous coupling tuy
 are competitive with other experiments
- The first new data from HERA II have been analysed and new isolated lepton candidates have been observed
- The increased luminosity of HERA II (1 fb⁻¹) is necessary to clarify the origin of the isolated lepton events and provide increased sensitivity to the production of single top quarks