Comparison of Diffractive Final States with LO and NLO QCD Predictions

Sebastian Schätzel

Univ. Heidelberg

for the H1 Collaboration

XII Workshop on Deep–Inelastic Scattering Štrbské Pleso, 14 April 2004

- Test of QCD Factorisation in NLO and LO
- Diffractive Production of Dijets and Charm in DIS
- Dijets in Diffractive Photoproduction and Gap Survival Probability

Factorisation in Diffraction

Hard Scattering Factorisation

$$\sigma^{D} = \sum_{partons \ i} f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

$$f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

$$f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

$$f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

$$f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

$$f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

$$f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

$$f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

$$f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

$$f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

$$f_{i}^{D} \left(x_{IP}, t, z, Q^{2} \right) \otimes \hat{\sigma}^{\gamma i}$$

proven for diffractive DIS (Collins)

- Regge Factorisation (Pomeron exchange model)
- z, Q² evolution of diffractive PDFs independent of t and x_{IP}

$$f_{i}^{D}(x_{I\!\!P},t,z,Q^{2}) = f_{I\!\!P/p}(x_{I\!\!P},t) f_{i/I\!\!P}(z,Q^{2}) + f_{I\!\!R/p}(x_{I\!\!R},t) f_{i/I\!\!R}(z,Q^{2})$$
flux factor Pomeron PDF Reggeon

- assumption, no proof
- compatible with inclusive diffr. measurements at present precision

S. Schätzel: Comparison of diffractive final states with QCD predictions, DIS Workshop, Štrbské Pleso, 14 April 2004

Pomeron Parton Densities

- NLO (red) and LO (blue)
 PDFs from DGLAP fits to inclusive diffractive measurements (σ^D_r)
- Gluon dominant (75±15 %)
- Iarge uncertainty at high z

Diffractive Dijet and Heavy Flavour Production

Sensitive to diffractive gluon through boson–gluon fusion

fractional momenta

$$x_{IP} \approx \frac{Q^{2} + M_{X}^{2}}{Q^{2} + W^{2}}$$
$$z_{IP} \approx \frac{Q^{2} + M_{12}^{2}}{Q^{2} + M_{12}^{2}}$$

NLO Comparison with Diffractive Dijet Production

H1 Dijet Measurement Eur. Phys. J. C20 (2001) 29

- L=18/pb; 4 < Q² < 80 GeV², 0.1 < y < 0.7, x_{IP}<0.05, CDFcone algorithm, p_T^{jet}(1,2)>4 GeV
- corrected to asymmetric cuts p_T^{jet}(1)>5 GeV, p_T^{jet}(2)>4 GeV using MC because NLO unstable for symmetric cuts

NLO Calculation

DISENT (Catani, Seymour) NLO program for standard DIS, interfaced to diffractive PDFs (suggested by F. Hautmann, JHEP 0210 (2002) 025)

•
$$\mu_r = \frac{p_T(1) + p_T(2)}{2}$$
, $\mu_f^2 = 40 \text{ GeV}^2$, $\Lambda_{QCD}^{(4)} = 0.2 \text{ GeV}$ (as in PDFs)

- \blacksquare scale uncertainty: 20% ($\mu_{_{r}}$ varied by factors 2 and 0.5) \rightarrow inner band
- hadronisation correction uncertainty from MC: ~10% \rightarrow outer band

Momentum Fraction of Diffractive Exchange

- NLO calculation gives reasonable description of shape and normalisation
- LO result too low, shape not described
- size of NLO correction: factor ~2 (large because low p_T of jets)
- not shown: gluon uncertainty at large z_{IP} (~25%)

NLO Diffractive Dijet Cross Sections

H1 Diffractive Dijets (prel.) H1 fit 2002, $\mu_r^2 = p_T^2$, $\mu_r^2 = 40 \text{ GeV}^2$ 2.5 do / dW [pb/GeV] do / dQ² [pb/GeV²] H1 Data p_{T,1(2)}>5(4) GeV
 DDISENT NLO *(1+δ_{had}) DDISENT NLO 2 DDISENT LO 10 1.5 1 1 0.5 -1 10 0 150 20 40 60 80 100 200 250 $Q^2 [GeV^2]$ W [GeV] 200 [qd] dơ / d log₁₀x_{IP} [pb] dσ / d<η>^{lab} [] jets 001 10 10 50 1 0 -2.5 -2.25 -2 -1.75 -1.5 -0.5 0.5 1.5 0 $<\!\!\eta\!\!>^{\text{lab}}$ log₁₀x_{IP} jets

7

reasonable description of all distributions

S. Schätzel: Comparison of diffractive final states with QCD predictions, DIS Workshop, Štrbské Pleso, 14 April 2004

Evolving Structure of Diffractive Exchange

NLO Comparison with D* Production

H1 D* measurement Phys. Lett. B520 (2001) 191

L=19/pb, 2<Q²<100 GeV², 0.05<y<0.7, x_{IP}<0.04, p_T^{D*}>2 GeV, $|\eta_{D^*}| < 1.5$

NLO Calculation

- HVQDIS (Harris, Smith), diffractive extension by Alvero, Collins, Whitmore hep-ph/9806340
- hadronisation fraction $f(c \rightarrow D^*)=0.233$
- Peterson fragmentation: ϵ =0.078, varied between 0.035..0.100 \rightarrow outer band (+21 / -7 %)
- $m_c = 1.5 \text{ GeV}$, varied between 1.35..1.65 GeV \rightarrow outer band (±12%)

•
$$\Lambda^{(4)}_{QCD} = 0.2 \text{ GeV}, \ \mu_r^2 = \mu_f^2 = Q^2 + 4 m_c^2$$

• scale uncertainty (μ_r varied by factors 2 and 0.5) \rightarrow inner band:

(+14/-10%)

9

Momentum Fraction of Diffractive Exchange

 NLO calculation gives good description within large uncertainties of measurement

size of NLO correction is smaller than for dijet production

NLO Diffractive D* Cross Sections

good description for all distributions within large uncertainties of measurement

Summary Dijet and D* Production in DIS

Within uncertainties (theoretical and experimental):

QCD Factorisation holds in diffractive DIS, tested to NLO

consistent description at NLO of both dijet and D* production using diffractive PDFs from inclusive diffractive measurements

Single–Diffractive Dijets at the Tevatron

LO Comparison to diffr. Parton Densities from HERA

- Breakdown of Factorisation!
- rate overestimated by factor ≈10
- secondary interactions due to hadronic system?

Diffractive Structure Function of Antiproton

Photoproduction — Transition from DIS to $p\bar{p}$

x_v: Momentum Fraction of Photon

Shape and normalisation well described

within uncertainties:

- Result consistent with QCD Factorisation in Photoproduction
- no difference between direct and resolved photon processes

Dependence on z_{\mu} and x_{\mu}

distributions well described!

More well described Cross Sections H1 Diffractive γp Dijets

S. Schätzel: Comparison of diffractive final states with QCD predictions, DIS Workshop, Štrbské Pleso, 14 April 2004

Survival Probability in Diffractive Photoproduction

- comparison of diffractive dijet cross sections in DIS and photoproduction
- need MC to correct for different acceptance (phase space effect)

$$S = \frac{\left(\frac{MC}{data}\right)_{\gamma p}}{\left(\frac{MC}{data}\right)_{DIS}} = 1.3 \pm 0.3 \text{ (exp.)}$$
uncertainty is quadratic sum of experimental errors

No significant suppression found in photoproduction relative to DIS

Summary

Diffractive Dijet and D* Production in DIS

- NLO comparisons with diffractive PDFs from inclusive diffractive measurements
- Results consistent with QCD Factorisation at NLO

Diffractive Dijet Photoproduction

- comparisons with Monte Carlo (LO + Parton Showers)
- Results consistent with QCD Factorisation in diffractive photoproduction
- no significant suppression observed in photoproduction relative to DIS