New Measurement of F₂ at low Q² with Initial State Radiation Data

A. Petrukhin (H1 Collaboration)

DIS 2004, Štrbské Pleso, Slovakia April 14, 2004

Shifted Vertex 2000 Data

- Special minimum bias trigger running in August 2000.
- Vertex shifted by +70cm in order to access $Q^2 \le 1GeV^2$
- Total luminosity: 583 nb⁻¹
- Preliminary analysis presented previously.

- The data were taken with nominal beam energies \rightarrow limited acceptance below 1GeV² at low y.
- Extend the kinematic range by using ISR events.

H1 Detector at HERA

- High precision reconstruction:
 - SpaCal: $\Delta E'_{e}/E'_{e}=0.3\%$ at kinematic peak
 - BST: $\Delta \theta = 0.2$ mrad, suppression of neutral γp background
 - LAr: $\Delta E_h/E_h = 2\%$ from p_t^h/p_t^e calibration.
- Shifting vertex opens detector acceptance at low Q².

ISR Measurement Method

- If a photon is emitted from the incoming positron effectively the e⁺ beam energy is reduced.
- This can be utilized to access larger x=Q²/(ys), at a given Q², as was previously done in ISR F₂ data analyses.
- However, in these analyses the radiated photon is to be tagged which introduces an acceptance and measurement limitation.
- Here a new method is introduced which uses ISR but does NOT require the photon to be detected.
- The kinematics and the incoming electron energy are solely reconstructed from the final state, excluding the photon, using the sigma method and energy momentum conservation.

`Sigma' Method - reminder

• Sigma method:

where $\Sigma = (E - p_z)_{had}$

• The incoming electron energy is determined by

$$2E_e = \Sigma + (E - p_z)_{el}$$

which is generally valid for both radiative and nonradiative events.

• This analysis determines Bjorken x as

$$x_{R} = \frac{Q_{\Sigma}^{2}}{y_{\Sigma}.4E_{e}E_{p}} = \frac{Q_{\Sigma}^{2}}{2\Sigma E_{p}}$$

which is independent of E_e .

E_e reconstruction

- $2E_e = \Sigma + (E p_z)_{el}$
- The reduced incoming electron energy is well measured by the final state particles.
- Because 2E_e for radiative events is much reduced larger values of x=x_R are reached.

$$x_{R} = \frac{Q_{\Sigma}^{2}}{y_{\Sigma}.4E_{e}E_{p}} = \frac{Q_{\Sigma}^{2}}{2\Sigma E_{p}}$$

Control Distributions

- DIS simulation DJANGO using Fractal Model for F₂. Normalized to luminosity.
- γp PHOJET normalized to tagged positron events.

Systematic Uncertainties

- Correlated systematic uncertainty
 - electron energy (0.3% at 27.6 GeV, 2% at 7 GeV)
 - electron angle (0.2mrad, measured by Backward Silicon Tracker)
 - hadronic calibration (5% SpaCal, 2% LAr and tracks)
 - LAr noise contribution to E-p_z and P_t (10%)
 - **Photoproduction background** (20% PHOJET normalisation)
- Uncorrelated systematic uncertainty
 - MonteCarlo statistics
 - trigger (0.5%)
 - BST reconstruction (2%)
 - radiative corrections (3%, not applied)
- Total cross section uncertainty is ~10%.
- Uncertainty of the luminosity measurement: 1.8% (hereafter not included in measurement errors)

Cross Section – ISR alone

hep-ph/0203260 hep-ph/0207031 hep-ph/9712415

Cross Section – svtx00 & ISR

• ISR method complements svtx data by accessing large x at low Q².

Low Q² Cross Section Measurements

 ISR data consistent with data from ZEUS BPT, H1 QEDC and NMC in the respective regions of overlap.

Rise of F₂ towards low x

- Presented svtx00 ISR data are combined with the measurement of non-ISR svtx00 data.
- F₂ data used to fit xdependecies in Q² bins for x<0.01 (and W>12GeV) :

$$F_2 = c(Q^2) \cdot x^{-\lambda(Q^2)}$$

- Bridge Q² gap between BPT and data from standard detector and analysis.
- From soft hadronic interactions it is expected that $\lambda \rightarrow \sim 0.08$ for $Q^2 \rightarrow 0$.

Summary

- The region of large x at low Q², below 1 GeV², is shown to be accessible using a new reconstruction method using ISR events without an explicit detection of the radiated photon.
- The obtained cross section is consistent with other data in the regions of overlap and with phenomenological expectations. The accuracy of this preliminary analysis is about 10%.
- The ISR data extend the region to larger x allowing the rise of F_2 to low x to be determined for Q^2 below 1GeV^2 in the H1 data.