





# Test of QCD Using Multijets in Neutral Current DIS at HERA

## Liang Li University of Wisconsin

**On behalf of the ZEUS Collaboration** 

# **Motivation for Multijets Study**

- Add a gluon radiation to dijet or split a gluon to  $q\overline{q}$
- $\rightarrow$  direct test of QCD at  $O(\alpha_s^2)$
- An ideal laboratory for studying gluon radiation.
- In the ratio  $\sigma_{trijet}/\sigma_{dijet} = O(\alpha_s)$ , cancellation of many correlated experimental and theoretical uncertainties.
- Multijet NLO Calculations available (Ref: Phys.Rev.Lett.87:082001,2001)





# Deep Inelastic Kinematics and Data Selection





**Neutral Current:**  $e^+p \rightarrow e^+ X (\gamma, Z)$ 

- $\mathbf{Q}^2 \equiv -\mathbf{q}^2$ : momentum transfer
- x ≡ Q<sup>2</sup> / 2pq: momentum fraction carried by struck quark (QPM)
- y ≡ p•q / p•k: fraction of electron energy . transferred (in proton rest frame)
- s = (p+k)<sup>2</sup> : center of mass energy

ZEUS 1998-2000 data

- 82.2 pb<sup>-1</sup>
- $\sqrt{s}$  = 318 GeV
- E<sub>p</sub>=920 GeV, E<sub>e</sub>=27.5 GeV

#### **Kinematic Range**

- 10 GeV<sup>2</sup> <  $Q^2$  < 5000 GeV<sup>2</sup>
- Y<sub>EL</sub> < 0.6, Y<sub>JB</sub> > 0.04
- cosγ<sub>had</sub> < 0.7

#### **Jet Reconstruction**

- Invariant KT algorithm in Breit frame (inclusive)
  - E<sub>T,jet</sub><sup>BRT</sup> > 5 GeV
- -1 <η<sub>jet</sub><sup>LAB</sup> < 2.5
- Invariant mass M<sub>2,3jet</sub> >25 GeV



# LO and NLO Calculation



# LO MC

- LEPTO (6.5.1) used for acceptance corrections and hadronization corrections
- ARIADNE (4.0.8) used for systematic checks
- GEANT (3.13) used for detector simulation

# **NLO Program**

- NLOJET by Nagy Trocsanyi (Phys.Rev.Lett.87:082001,2001)
- Renormalization and factorization scales tested for  $\overline{E}_T^2$ and  $(\overline{E}_T^2 + Q^2)/4$
- Dijet:  $\overline{E}_{T} = (E_{T,1} + E_{T,2})/2$ , trijet:  $\overline{E}_{T} = (E_{T,1} + E_{T,2} + E_{T,3})/3$
- PDF: CTEQ6, MRST2001, CTEQ4
- Data and NLO compared at hadron level
- First NLO program for trijets, cross checked for dijets



Good agreement within 1~2% with fixed  $\alpha_{EM}$ =1/137



#### Multijets in NC DIS , L.Li (U. Wisconsin)



# Compare Data vs. NLOJET : CTEQ6 CTEQ6 PDF



ZEUS



Scale  $\mu_r = \mu_f = (\overline{E}_T^2 + Q^2)/4$ 

Dijet NLO:  $O(\alpha_s)$ Trijet NLO:  $O(\alpha_s^2)$ 

•Measurement down to low Q<sup>2</sup>

•Test of scale dependence

•High renormalization scale dependence in low Q<sup>2</sup>

•Good description of both dijets and trijets over 3 orders of magnitude in Q<sup>2</sup>



# Compare Data vs. NLOJET : MRST2001 and CTEQ4



ZEUS

### ZEUS



Good description of both dijets and trijets over 3 orders of magnitude in Q<sup>2</sup> for both PDFs

Multijets in NC DIS , L.Li (U. Wisconsin)



# **Cross Section Ratio: CTEQ6**



### ZEUS



 $R_{3/2} = \sigma_{trijet} / \sigma_{dijet}$ 

CTEQ6  $\alpha_s$  = 0.1179

- Systematic uncertainties
  substantially reduced
- Scale dependence reduced
- Very sensitive test of QCD calculation
- Good description of data over large range of scales



# Cross Section Ratio: MRST2001 and CTEQ4



#### MRST2001 α<sub>s</sub> = 0.1190 ZEUS

#### CTEQ4M $\alpha_s = 0.1160$ ZEUS



Multijets in NC DIS , L.Li (U. Wisconsin)

DIS 2004, April 14, 2004



# Cross Section Ratio : CTEQ4 and MRST2001



### ZEUS



#### Some sensitivity to PDF is observed



# Cross Section Ratio : CTEQ4 with Different α<sub>s</sub>



### ZEUS



• As expected, predictions within one PDF are sensitive to  $\alpha_s$ 





- NLO with fixed  $\alpha_{\text{EM}}$  describes data well using 3 different PDFs: CTEQ4, CTEQ6 and MRST2001
- $R_{3/2}$  cross section ratio is sensitive to  $\alpha_{s}$  but some sensitivity to PDF is also observed and under study
- MRST2001 and CTEQ6 with different  $\alpha_{\rm s}$  sets are needed