Neutral and Charged Currents at High Q² in Collisions of Longitudinally Polarized Positrons with Protons at HERA II

Mayuko Kataoka

(KEK, Nara Women's University) On behalf of the ZEUS Collaboration

DIS 2004

Štrbské Pleso,

High Tatras, Slovakia

14-18 April 2004

Contents

- -- Introduction
- -- Event selection
- -- Cross section
- -- Conclusion

Deep Inelastic Scattering in HERA ~NC & CC

Polarized lepton(HERA II) in SM

Neutral Current :

- -- Z⁰ couples differently to the left and right handed lepton.
- Effect of polarization in high Q² only.

Charged Current :

- -- W couples only to the left handed lepton.
- -- Effect of polarization largely in all Q² region.

Luminosity and polarization in HERA II

03-04 polarized data : 6.6 pb ⁻¹

Polarization : 33%+-2.0%

CC cross section expectation in SM

In the Standard Model,

* electron: $\sigma_{cc}(p=P) = (1-P) \sigma_{cc}(p=0)$

* positron:
$$\sigma_{cc}(p=P) = (1+P) \sigma_{cc}(p=0)$$

-- Unpolarized lepton (HERA I)

CC cross section (e⁺, e⁻) were measured

- -- Polarized lepton (HERA II)
 - → test the Standard Model
- -- Cross section were measured @ P = 33%

NC cross section expectation in SM

Simulation at Lumi.=250pb⁻¹,P=+-70%

NC cross section in high Q² changed by polarization in SM largely.

- need large luminosity to see polarization effect.
- ► With about 7pb-1, do not see effect of polarization yet.

 $\begin{tabular}{|c|c|} \hline & & \end{tabular} \begin{tabular}{|c|c|} \hline & & \end{tabular} \begin{tabular}{|c|c|}$

Neutral Current event selection

		Pc	osit	ron	find	ding
--	--	----	------	-----	------	------

- -- Positron energy (Ee >10 GeV)
- -- CAL-track matching
- Reconstruction method:
 Double angle method (θ_e+ γ_h)

💈 Zeus Run 48087 Event 38541				
E=181 GeV	E _t =108 GeV	E-p _z =54.5		
E _r =0 GeV	p _t =5 GeV	p _x =-2.63 G		
phi=2.12	t _f =0.0788 ns	t _b =-1.74 ns		
E _e =60.2 GeV	θ _e =1.07	¢ _e =1.54		
Q ² _{e.DA} =4812 GeV ²		•		

Neutral Current events

-- Observed about 15000 events in Q²>200 GeV²

(Lumi. = 6.7pb-1).

-- DATA has good agreement to MC (luminosity normalized).

-- Reconstruction of the hadron system is fine ($P_{T,h},\gamma_h$ distribution).

→ let's see CC event

7

Kinematic Variables of Charger Current

Missing transverse momentum due to escaping neutrino

Ṕт

The Jaquet Blondel method

(Hadron system only)

$$y_{JB} = \frac{E - P_Z}{2E_e}$$

$$Q_{JB}^2 = \frac{P_T^2}{1 - y_{JB}}$$

$$\gamma = a\cos\left(\frac{P_T^2 - (E - P_Z)^2}{P_T^2 + (E - P_Z)^2}\right)$$

$$P_T = \sqrt{\left(\sum_i P_{x,h}^i\right)^2 + \left(\sum_i P_{y,h}^i\right)^2}$$

CC event selection

Charged Current variables

Data :

Lumi = 6.6 pb⁻¹ , P = 33%

Kinematic region :

CC MC @ P= 33% reproduced Data well.

Charged Current cross section

$$\sigma_{Born}^{CC}(pol. = P) = \frac{N_{DATA}}{N_{MC}} \cdot \sigma_{SM}^{CC}(pol. = 0)$$

$$\geq N_{DATA} : \text{Number of CC events measured}$$

$$\geq N_{MC} : \text{Number of CC events expected at } pol. = 0$$

$$\geq \sigma_{Born}^{CC}(pol. = 0) : \text{SM CC cross section at } pol. = 0$$
Systematic checks :
-- CAL energy scale
-- CC selection threshold Total ~2%
-- PDF uncertainty
-- Trigger uncertainty

Lumi.=6.6pb⁻¹, pol.=33%, Q²>400GeV², $\sigma_{CC}^{Q^2>400GeV^2} = 38.1 \pm 2.9(stat.) \pm 0.8(sys.) \pm 2.0(lumi.) \pm 0.8(pol) pb$

CC cross section vs. polarization 1

CC cross section vs. polarization 2

ZEUS

Summary

First measurement of CC cross section with polarized positron and proton scattering was presented.

The cross section at P=33% was

 $\sigma_{cc}^{Q^2 > 400 GeV^2} = 38.1 \pm 2.9(stat.) \pm 0.8(sys.) \pm 2.0(lumi.) \pm 0.8(pol) \, pb$

Consistent with the SM prediction