

F₂^{D(3)} measurements at Low, Medium and High Q²

M.Kapishin, JINR, Dubna

Diffractive DIS at HERA
 Diffractive reduced cross section
 Factorization in diffractive DIS
 Cross section measurements and QCD analysis
 Comparison with models
 Summary

Diffractive DIS at HERA

Large rapidity gap between leading proton p' and X

Momentum fraction of proton carried by colour singlet exchange: Momentum fraction of color singlet carried by struck quark:

Diffractive Reduced Cross Section

$$\frac{d^4\sigma}{d\beta dQ^2 dx_{IP} dt} = \frac{4\pi\alpha^2}{\beta Q^4} (1 - y + \frac{y^2}{2})\sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t)$$
Relation to F_2^D and F_L^D :
$$\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{2(1 - y + y^2/2)}F_L^{D(4)}$$

$$\sigma_r^D \approx F_2^D \text{ at low y} \qquad \sigma_r^D = F_2^D \text{ if } F_L^D = 0$$

Integrate over *t* when proton is not tagged $\rightarrow \sigma_r^{D(3)}$

e

Factorization in Diffractive DIS

QCD hard scattering factorization:

$$\sigma^{D}(\gamma^{*}p \to Xp) = \sum_{parton_{i}} f_{i}^{D}(x,Q^{2},x_{IP},t) \cdot \sigma^{\gamma^{*}i}(x,Q^{2})$$

 $σ^{γ^{*i}}$ - universal hard scattering cross section (same as in inclusive DIS) f_i^D - diffractive parton distribution function → obey DGLAP, universal for diffractive *ep* DIS (inclusive, di-jets, charm)

Additional assumption → Regge factorization:

$$f_i^D(x,Q^2,x_{IP},t) = f_{IP/p}(x_{IP},t) \cdot f_i^{IP}(\beta = x/x_{IP},Q^2)$$

 $f_{IP/p}$ - pomeron flux factor

 f_i^{IP} - pomeron parton distribution function

FPS proton vs Rapidity Gap

Rapidity gap selection:

σ^{D(3)} defined in the kinematical range:

 M_{Y} <1.6 GeV and |t|<1 GeV²

FPS proton selection:

 $\sigma_r^{D(4)}$ integrated over measured t range

➔Good agreement between two methods

Overview of σ_r^{D} measurements

- Data at Low Q^2 , $\mathscr{L} = 3.4 \text{ pb}^{-1}$

Good agreement between measurements Data well described by QCD fit

Data at Medium Q², \mathscr{L} = 10.6 pb⁻¹

Data at High Q^2 , $\mathscr{L} = 65 \text{ pb}^{-1}$

Measurement at Low Q², Test of Regge Factorization

Fit x_{IP} dependence at fixed β , Q:

$$\sigma_r^{D(3)}(x_{IP},\beta,Q^2) = \sum_{IP,IR} f_i(x_{IP}) \cdot A_i(\beta,Q^2)$$

Regge Flux factor for *IP* and *IR*:

$$f_{IP}(x_{IP}) = \int_{t_{cut}}^{t_{min}} \frac{e^{B_{IP}t}}{x_{IP}^{2\alpha_{IP}-1}} dt$$

Data well described by exchange of *IP* and *IR*:

 $\alpha_{IP} = 1.110 \pm 0.020 (\text{stat.}) \pm 0.024 (\text{syst.})^{+0.068}_{-0.033} (\text{model})$

Effective $\alpha_{IP}(0)$ vs Q²

Diffractive cross section: $x_{IP}F_2^D \sim A(\beta, Q^2) x_{IP}^{2-2\alpha(t)}$

Inclusive cross section: $F_2 \sim B x^{1-\alpha(Q^2)}$

Effective $\alpha_{IP}(0)$:

- Iower than for inclusive cross section
- → consistent with soft IP at low Q²
- data suggest increase with Q² but consistent within the errors
- → uncertainty due to ignorance of F^D

Parameters of QCD Fit

- Singlet quark and gluon parameterised at Q₀²=3GeV² by Chebychev polynomials, massive charm treatment via BGF
- Assume Regge factorization for x_{IP} dependence, α_{IP}(0) extracted from data, GRV-π sub-leading contribution at high x_{IP}
- □ NLO DGLAP evolution, fit Medium Q² data (Q²>6.5 GeV²)
- Full propagation of correlated experimental systematic and theoretical uncertainties

Q^2 dependence of $\sigma_r{}^D$

At fixed x_{IP} and β :

Large positive scaling violations except at high β

- →Gluon dominated
- **Compare different** x_{IP} bins:
- scaling violations are similar
- Consistent with Regge factorization

H1 Preliminary

Quantify Scaling violations at fixed x _{IP} and β:

 $\sigma_r^{D} = A + B \ln Q^2$

 $B = d \sigma_r^D / d \ln Q^2$

Large positive Scaling violations up to β~0.6

Comparison with inclusive DIS

M.Kapishin, F2D measurements

Diffractive PDF's:

- ^{²¹} ✓ PDF extend to large fractional momentum z
 - Precise measurement of quark singlet distribution
 - Gluon distribution dominated
 - Large gluon uncertainty at high z
 - → Can be applied to test QCD factorization in *ep* final states (charm, di-jets) and hadron-hadron scattering

Gluon momentum fraction and F_{I}

H1 preliminary

Momentum fraction of diffractive exchange carried by gluons → 75 ± 15 %

Measurement at High Q² vs Prediction of QCD Fit

 Improved statistics and kinematical range of new measurement compared to previous measurement
 good agreement

- Prediction of QCD Fit based on Medium Q² data
 - good agreement
- ¹⁶⁰⁰ Sub-leading trajectory needed at high x_{IP} and low β

Extrapolation of QCD Fit: β dependence

Prediction of NLO Fit based on Medium Q² data

good agreement with Low and High

Q² data

Low and High Q² data will provide additional constraints on singlet and gluon distributions

M.Kapishin, F2D measurements

Extrapolation of QCD Fit: Q² dependence

Extrapolation of NLO Fit over an order of magnitude in Q²

good agreement with Low and High

Q² data

Low and High Q² data will provide additional constraints on singlet and gluon distributions

Low and Medium Q² data vs Colour dipole saturation model

- Photon fluctuates in qq/qqg long before interaction with proton
- Parameterization for dipoleproton cross section:
- color transparency for small dipole sizes
- cross section saturation at low x / Q²
- Model consistently undershoots the data

Medium and High Q² data vs SCI model

Summary

- High precision measurements of the diffractive reduced cross section have been performed at Low, Medium and High Q²
- Data are consistent with Regge factorization assuming additional contribution from sub-leading trajectory
- \Box Similar Q² dynamics to inclusive DIS at medium β
- □ NLO DGLAP fit to Medium Q² data:
- diffractive parton distributions (quark singlet and gluon)
- ✓ gluon distribution dominates (75±15%)
- ✓ can be used to test QCD factorization in *ep* and *hh* interactions
- High and low Q² measurements are in agreement with QCD Fit predictions
- Color Dipole Saturation model undershoots Low and Medium Q² data
- Soft Color Interaction model describes Medium and High Q² data except at low β