A First Measurement of the Charged Current Cross Section at High Q² in Collisions of Longitudinally Polarised e⁺p Scattering at HERA II

> Oliver Henshaw Birmingham University DIS04, Strbske Plesco, April 15th

DIS 2004, Strbske Pleso

Contents

- Inclusive Polarised DIS
- Summary of Hera I Data
 - H1 Detector at Hera II
- Polarised Charged Current Cross Section Measurement
 - Future Polarised Neutral Current Measurement
 - Prospects

Deep Inelastic Scattering Kinematics

Neutral, Charged Current DIS

 $Q^2 = -q^2$, resolving power of probing electron

y, inelasticity of scattered lepton

x, momentum fraction of proton carried by struck quark

Cross Sections and Polarisation

$$\begin{aligned} \frac{d^2 \sigma_{\rm NC}^{\pm}}{dx dQ^2} &= 2\pi \alpha^2 \bigg[\frac{1}{Q^2} \bigg]^2 [\mathbf{Y}_+ \mathbf{F}_2^{\rm P} \mp \mathbf{Y}_- \mathbf{x} \, \mathbf{F}_3^{\rm P} - \mathbf{y}^2 \, \mathbf{F}_L] \\ \mathbf{F}_2^{\rm P} &= \sum_{\rm q} \mathbf{x} \left[\mathbf{q} \left(\mathbf{x} \,, \mathbf{Q}^2 \right) + \, \bar{\mathbf{q}} \left(\mathbf{x} \,, \mathbf{Q}^2 \right) \right] \left(\mathbf{A}_{\rm q}^{\rm 0} + \, \mathbf{P} \mathbf{A}_{\rm q}^{\rm P} \right), \ \mathbf{Y}_{\pm} \, = \, \frac{1}{2} \, \left(\mathbf{1} \, \pm \, \left(\mathbf{1} - \mathbf{y}^2 \right) \right) \\ A_q^{\rm 0} &= e_q^2 - 2e_q v_q v_e \chi_Z + \left(v_q^2 + a_q^2 \right) \left(v_e^2 + a_e^2 \right) \chi_Z^2 \\ A_q^{\mathcal{P}} &= 2e_q v_q a_e \chi_Z - 2 \, \left(v_q^2 + a_q^2 \right) v_e a_e \chi_Z^2 \\ \frac{d^2 \sigma_{\rm CC}^+}{dx dQ^2} &= \left[\mathbf{1} + \mathbf{P} \right] \frac{\mathbf{G}_{\mu}}{\pi} \left[\frac{\mathbf{M}_{\rm W}^2}{\mathbf{Q}^2 + \mathbf{M}_{\rm W}^2} \right]^2 \left[\mathbf{\bar{u}} + \mathbf{\bar{c}} + (\mathbf{1} - \mathbf{y})^2 (\mathbf{d} + \mathbf{s} + \mathbf{b}) \right] \\ \frac{d^2 \sigma_{\rm CC}^-}{dx dQ^2} &= \left[\mathbf{1} - \mathbf{P} \right] \frac{\mathbf{G}_{\mu}}{\pi} \left[\frac{\mathbf{M}_{\rm W}^2}{\mathbf{Q}^2 + \mathbf{M}_{\rm W}^2} \right]^2 \left[\mathbf{u} + \mathbf{c} + (\mathbf{1} - \mathbf{y})^2 (\mathbf{d} + \mathbf{\bar{s}} + \mathbf{\bar{b}}) \right] \end{aligned}$$

DIS 2004, Strbske Pleso

Structure Function F₂

$$F_{2}^{em} = \sum_{quarks} e_{i}^{2} (xq_{i} + x \bar{q}_{i})$$
$$\frac{d F_{2}}{d (\ln Q^{2})} \propto \alpha_{s} g (x, Q^{2})$$

- F_2 measured over more than four orders of magnitude in x and Q^2
- 2-3% precision in central region
- Dominated by **u** at high **x**
- Scaling violation at low x
- Fit NLO QCD prediction of DGLAP to H1 Data
 - \rightarrow Q² evolution well described

Reduced Cross Section

 ${}^{\circ} \boldsymbol{\mathsf{b}}_{10}^{\mathsf{O}_{\mathsf{b}}}$

10 ⁵

10⁴

10³

10²

10

1

-] 10

-2 10

-3 10

x = 0.65 (x 1)

10

10⁴

 $/ \text{GeV}^2$

DIS 2004, Strbske Pleso

Oliver Henshaw

10³

10²

DIS 2004, Strbske Pleso

Oliver Henshaw

7

Charged Current Cross Section

- Charged current interaction suppressed by W mass at low Q^2

Quark and Gluon Density Functions

• Fit data with NLO DGLAP equations

- → Extract parton distributions
- x dependence can only be determined from data
- Q² behaviour extrapolates to LHC kinematics
- See talk by Benjamin Portheault for more detail

Hera II

- H1 collected 100pb⁻¹ of data up to end 2000
- Shutdown for upgrade in Hera ring and experimental detectors
- Five-fold increase in design luminosity achieved by
 - Focussing magnets very near Interaction Point
 - Increase in beam current
- Longitudinally polarised electron beam
- Encountered difficult conditions upon 2002 startup
 - Studied and controlled backgrounds

DIS 2004, Strbske Pleso

The H1 Detector at Hera II

Many **new** and **upgraded** components

DIS 2004, Strbske Pleso

Lumi Profile

DIS 2004, Strbske Pleso

Polarisation at Hera II

- Electron beam naturally transversely polarised
- Spin Rotators at IP give longitudinal polarisation
- Polarimeters measure asymmetries in backscattered laser light

DIS 2004, Strbske Pleso

Average HERA polarisation (longitudinal polarimeter)

DIS 2004, Strbske Pleso

Data Sample

- Collected 15.3pb⁻¹ of data between 15^{th} October 2003 and 1^{st} March 2004
- Compare with Django MC prediction
 - Reweight input Structure Functions to 2000 PDF fit
 - Simulate upgraded H1 Detector
- Pythia MC models photoproduction background
- Study detector with high statistics, clean NC Sample
- Use this understanding to measure CC cross section

Neutral Current Event Selection

- Scattered Electron
 - QESCAT electron finder
 - High $\rm P_{t}$ electromagnetic cluster, $\rm E_{e} > 11~GeV$
 - Isolated in calorimeter
 - Link to a charged track
- E P_z > 35 GeV
- y_e < 0.9
- $Q^2 > 100 (GeV)^2$
- Energy scale calibration takes advantage of overconstrained kinematics
- Double Angle method predicts 'true' energy

Charged Current Measurement

- Reject events with Scattered Electron candidate
- Require high missing P_t, attributed to neutrino
- Energy balance in calorimeter, V_{ap} / V_p < 0.2
- 0.03 < y_h < 0.85
- Measure $Q^2 > 400 (GeV)^2$

DIS 2004, Strbske Pleso

Charged Current $\sigma_{\rm Tot}$

- •Polarisation expected to have a linear (1+P) influence on CC cross section
- •First measurement made on lepton helicity dependence of $ep \rightarrow \nu X$ with $\approx 33\%$ Polarisation
- •Consistent with SM
- •2.3 σ polarisation effect

$$\sigma^{P}_{CC} = 34.67 \text{ pb} \pm 5.6\% \pm 4.8\%$$

stat. syst.
P=(33 ± 2) %

$$\sigma^{0}_{CC} = 28.44 \text{ pb} \pm 2.7\% \pm 4.3\%$$

DIS 2004, Strbske Pleso

Oliver Henshaw

22

Polarised Neutral Currents

Polarised Neutral Currents

DIS 2004, Strbske Pleso

DIS 2004, Strbske Pleso

Summary

- First new measurement of helicity dependence of $ep \rightarrow \upsilon X$ interaction
- A Polarised Neutral Current measurement offers a new handle to extract precise physics
- A Polarised Charged Current measurement is a simple and powerful test of the standard model
- Hera has delivered the first set of right-polarised positron data and is now running with the opposite helicity.
- First step towards a demonstration of polarisation dependence of charged and neutral current cross sections