Exclusive ϕ **production in DIS at HERA**

Miroslav Helbich Columbia University, New York ZEUS Collaboration

DIS Workshop High Tatras, 14-18 April 2004

- Introduction
- Data selection
- Results
 - t-dependence: b-slope vs Q^2
 - ♦ W dependence
 - ◆ Q² dependence
 - Helicity analysis
- Summary

Exclusive ϕ **production in DIS**

 γ^* p centre of mass energy at proton vertex

Virtuality of exchanged photon $Q^2 = -q^2 = (k-k')^2 = 2 - 70 \text{ GeV}^2$ $W = (q+p)^2 = 35 - 145 \text{ GeV}$ 4-momentum transfer squared $t = (P-P')^2 = 0.6(1) \text{ GeV}^2$

VM: φ (1019), ρ (770), J/ψ (3096))

- $\rightarrow \rho$ and J/ ψ show different behaviour
- ϕ mass in between => how does it behave?

Theoretical models for VM production : dipole model

Dipole picture in proton rest frame:

- $\gamma^* \rightarrow q\bar{q}$
- $q\bar{q}$ scattering on the proton
- VM is formed (after interaction)

r : transverse separation of $\mathbf{q}\mathbf{q}$ $\mathbf{r} \sim [z(1-z)Q^2 + m_q^2]^{1/2}$, $\mathbf{z} = p_q/p_{\gamma^*}$ small dipoles (large Q² or m_q^2) => pQCD large dipoles (small Q² for light VM) => soft interactions

Theoretical models for VM production

pQCD

- leading order: 2 gluon exchange
- $\sigma \propto [x^{-0.2}]^2$, $(x \approx Q^2/W^2) \Longrightarrow \sigma \propto W^{0.8}$
- → d σ /dt \sim e^{bt} ,b = b_{2g} \approx 4 GeV⁻² (const.)
- b constant with W => $\alpha' = 0$ GeV⁻²

What is the hard scale?

• Ryskin: $Q_{eff}^2 = 1/4 (Q^2 + M_{VM}^2 + |t|)$

Soft physics

- $d\sigma/dt \propto e^{bt} (W/W_0)^{4(\alpha t 1)}$
- α (t)= $\alpha_0 + \alpha$ 't, $\alpha = 1.08 \alpha' = 0.25 \text{ GeV}^{-2}$
- $\sigma \propto W^{0.22}$

Event selection

- 2 good quality primary vertex tracks of opposite charges allow for extra primary tracks associated with electron
- Electron with E>10 GeV in a well measured region of detector
- No cluster with E>300MeV not associated with electron or Kaons

Data set

- 98-00 $e^{\pm}p$ data; $E_{p} = 920 \text{GeV} E_{e} = 27.5 \text{ GeV}$
- $L = 66.4 \text{ pb}^{-1}$
- ~ 4000 events in accepted kinematic range
- ϕ mass agrees within systematics: Fit: 1019.65GeV PDG: 1019.413±0.008 GeV

Cross-sections

• Extract Born-level, γ *p cross-sections

Normalization corresponds to :

- $m_{KK} = 2m_{K} (2m_{K} + 5\Gamma_{\phi})$
- Extrapolate from $|t| < 0.6 \text{ GeV}^2$ to full range
- ◆ Normalization error: Lumi: $2.5\% \oplus BR (\phi -> K^+K^-)$: 1%
- Proton dissociation background (ep \rightarrow e ϕ N)

 $f = 7_{-6}^{+10}$ % independent of Q², W, helicity angles; increasing with |t|

Largest systematics: detector alignment for electron position measurement

t-dependence

- $d\sigma/dt \sim exp(-b|t|)$
- ◆ $\sqrt{|t|}$ is Fourier conjugate of impact parameter => b is related to transverse size of interaction b ~ 1/4 ($r_p^2 + r_{VM}^2$)
- Data suggest scaling with $Q^2 + M_V^2$
- Decrease of b with $Q^2 =>$ high $Q^2 =$ small dipole size

W dependence as function of Q^2

- Fit to $\sigma \sim W^{\delta}$ δ is a function of Q^2
- Measured data agree well with results from other Vector Mesons
- Rise of δ with Q²+M_v² observed in global VM picture
 - ρ , ϕ : transition from soft to hard regime
 - $J\!/\psi\,$: hard already in photo-production

W dependence as function of t

- Fit to $\sigma \sim W^{\delta}$
- δ related to "Pomeron" trajectory $\delta = 4 (\alpha_{\rm IP} 1) \alpha_{\rm IP} = \alpha_0 + \alpha' t$
- α ' extracted from W dependence in bins of t
- Data are consistent with no t-dependence of δ
- ZEUS ρ 96-97 (prel.) $\alpha' = 0.04 \pm 0.07 \text{ (stat)}_{-0.04}^{+0.13} \text{ (syst)}$
- ZEUS J/ ψ 98-00 (DIS): $\alpha' = 0.07 \pm 0.05$ (stat) ± 0.03 (syst)

Q²- dependence

- ♦ Q² dependence for W=75 GeV
- Fit to $(Q^2+M^2)^{-n}$ data suggest that n rises with Q^2 (observed previously for ρ)
- $n=2.1 \pm 0.05(\text{stat}) \pm 0.05(\text{syst})$ for $Q^2=2.4 9.2 \text{ GeV}^2$
- $n=2.75 \pm 0.13(\text{stat}) \pm 0.07(\text{syst})$ for $Q^2=9.2-70 \text{ GeV}^2$

Helicity analysis

Helicity analysis

- Agreement with previous measurements
- Scaling with Q^2/M_v^2 for all VM observed
- Fit to $R=a(Q^2/M_v^2)^b$ describes data well
- $a = 0.51 \pm 0.07(stat) \pm 0.05(syst)$ $b = 0.86 \pm 0.11(stat) \pm 0.05(syst)$

Summary

- Cross-sections for $\gamma * p \rightarrow \phi p$ have been measured as a function of Q^2 , W, $\cos(\theta_p)$, t
- Large increase in available statistics => precision for ϕ
- Large impact on ϕ measurements as well as for global VM picture
- Data are consistent with expectations from phenomenological models