Measurement of Event Shapes in DIS

UNIVERSITY

of

GLASGOW

Steven Hanlon University of Glasgow

on behalf of

The ZEUS Collaboration

- Introduction
- Fits to Mean Event Shape Data

Outline:

- Fits to Differential Event Shape Distributions
- Addition of NLL Resummations to Fits
- Conclusions

Event Shape Analysis

- Event Shape Variables measure aspects of the topology an event's hadronic final state.
- Event Shapes in DIS should allow investigation of QCD over a wide range of energy scales.
- ... but hadronisation corrections are large for these variables.
- *Power Correction* model seeks to describe the effect of hadronisation on these variables.
- Measure event shapes in the *Breit Frame*
 - Largest possible separation between proton and scattered quark.
 - Select hadrons in Lab frame, then boost to Breit frame. Correct with MC.
 - Current Region is analogous to single e^+e^- hemisphere.

Steven Hanlon

Event Shape Variables

Measurement Phase Space : $80 \text{ GeV}^2 < Q^2 < 20480 \text{ GeV}^2$ and 0.04 < y < 0.9.

Axis dependent:

$$T = \frac{\sum_{i} |\overrightarrow{p} \cdot \overrightarrow{n}|}{\sum_{i} |\overrightarrow{p}|} \qquad B = \frac{\sum_{i} |\overrightarrow{p} \times \overrightarrow{n}|}{\sum_{i} |\overrightarrow{p}|} \quad \bullet \text{ Thrust - longitudinal momentum sum.} \\ \bullet \text{ Broadening - transverse momentum sum.} \\ \hline \text{Thrust} \qquad \hline \text{Broadening}$$

Both the above are measured with \overrightarrow{n} set to Thrust Axis and Photon Axis.

Independent of axis:

$$M^{2} = \frac{\left(\sum_{i} p^{\mu}\right)^{2}}{\left(2\sum_{i} E\right)^{2}} \quad C = \frac{3\sum_{ij} \overrightarrow{p_{i}} \overrightarrow{p_{j}} \overrightarrow{p_{j}} \sin^{2}(\theta_{ij})}{2\sum_{ij} \overrightarrow{p_{i}} \overrightarrow{p_{j}}} \quad \bullet \text{ Jet Mass and } C \text{ parameter} \\ - \text{ correlations of pairs of particles.} \\ \text{Jet Mass} \quad C \text{ Parameter}$$

Sums are over all momenta in the *Current Region* of the Breit frame.

Variables are calculated in the p-scheme.

Power Correction Model

- $\bullet < F > = < F >_{NLO} + < F >_{pow}$
- $< F >_{\text{NLO}}$ is calculated by DISASTER++.
- $< F >_{pow}$ is a correction to account for hadronization.
- Introduce a new parameter $\overline{\alpha_0}$ to describe non-perturbative effects.

$$\overline{\alpha_0} = \frac{1}{\mu_I} \int_0^{\mu_I} \alpha_{\text{eff}}(\mu_R) d\mu_R$$

$$< F >_{\text{pow}} \propto \frac{1}{Q} \left[\overline{\alpha_0} - \alpha_S(\mu_R) - \frac{\beta_0}{2\pi} \left(\ln\left(\frac{\mu_R}{\mu_I}\right) + \frac{K}{\beta_0} + 1 \right) \alpha_S^2(\mu_R) \right]$$

• Fit for $\alpha_S(M_Z)$ and $\overline{\alpha_0}$.

NLO + Power Correction Fits to Means

- Fits use Hessian method for statistical and systematic errors.
- High-*x* data points (open circles) are not fitted.
- All variables fitted with a good χ^2 .
- Photon axis variables (esp. $1-T_{\gamma}$) show large x-dependence.
- $1 T_{\gamma}$ correction very small and negative.
- Model describes data well.

Steven Hanlon

NLO + Power Correction Fits to Means

- $\bullet \ 1 T_{\gamma}$ fit poorly defined
 - large systematic errors.
- Fitted α_s values consistent to within 5%.
- Fitted $\overline{\alpha}_0 \simeq$ 0.45 to within 10%.
- \bullet Theory errors dominate, except for γ axis variables.
- Consistent with previous ZEUS measurement (Eur. Phys. J. 2003).

• Power Correction is interpreted as a 'shift' in the NLO distribution.

$$\frac{1}{N}\frac{dn}{dF}(F) = \frac{1}{N}\frac{dn_{\rm NLO}}{dF}(F - F_{\rm pow})$$

• Fit in central range of distributions, where fixed-order calculations are valid.

- Fit differential distributions over limited range.
- Usable range increases with Q^2 .
- All variables fitted with reasonable χ^2 .
- No B_T fit no resummation or matching available.
- Fits performed using the DISRESUM package.

- Fits use Hessian method for statistical and systematic errors.
- Photon axis variables fit with high $lpha_s...$
- ...but other variables consistent in α_s and $\overline{\alpha}_0$.
- Fits $\overline{\alpha}_0$ somewhat high compared to that from means.

NLL Resummations

- In the 1 + 1 jet limit, large logarithmic terms cause event shape variables to converge poorly.
- A Resummation sums the dominant terms of the perturbative series at all orders of α_s .
- A schematic NLL resummed integral cross section:

$$d^{2}\sigma_{r}(x,Q^{2},F) = \begin{bmatrix} \mathbf{C}_{0} + \bar{\alpha}_{\mathbb{S}}(Q^{2})\mathbf{C}_{1} \end{bmatrix} e^{Lg_{1}(\alpha_{\mathbb{S}}\beta_{0}L) + g_{2}(\alpha_{\mathbb{S}}\beta_{0}L)}$$
LL NLL

- To combine with NLO calculations, need to remove the parts of the fixed-order calculation already counted in the resummation: Matching. $\sigma(F) = \sigma_r + \bar{\alpha}_{\text{S}}(\sigma_e^{(1)} - \sigma_r^{(1)}) + \bar{\alpha}_{\text{S}}^2(\sigma_e^{(2)} - \sigma_r^{(2)})\Sigma(x, Q^2, F)$
- This is M_2 matching. Σ term makes cross-section tend to 0 as $F \to 0$.
- Here, M_2 modified matching is used. Modification controls behaviour at the upper limit $F_m{}^{ax}$.

• Add NLL Resummations to fits of differential distributions - fit into peak region.

 \bullet Peaks of M^2 and C distributions now fitted.

- NLL resummations added to event shape fits.
- Increase in usable range fit into peak region where resummations dominate over fixed order contribution.
- Most variables fitted with a reasonable χ^2 , C is poorer.
- DISRESUM package used to perform fits.

- C is consistent in α_s but low in $\overline{\alpha}_0$. C result very sensitive to fitted range.
- Results consistent with $\alpha_s = 0.118$ and suggest $\overline{\alpha}_0 \simeq 0.5$.
- Fits are sensitive to matching method.
- Dominant theory errors are renormalisation scale and factor in log terms: ± 0.005 in α_s and ± 0.03 in $\overline{\alpha}_0$ each.

Conclusions

- NLO + Power Correction has been fitted to mean event shape data $\alpha_s \simeq 0.12, \overline{\alpha}_0 \simeq 0.45$. Consistent with published analysis.
 - Photon axis variables poorly determined.
- NLO + Power Correction fitted to differential event shape data similar α_s obtained, but $\overline{\alpha}_0\simeq 0.65$
 - Photon axis variables not consistent with others.
- \bullet NLL Resummed calculations have been added to the fits $\alpha_s\simeq 0.118, \overline{\alpha}_0\simeq 0.5$
 - Resummation gives consistent α_s , $\overline{\alpha}_0$ for T_γ , B_γ , M^2 , T_T .
 - -C fit very dependent on fitted range.