Heavy flavour production at HERA

Erik Maddox (NIKHEF/UvA) On behalf of the H1 & ZEUS collaborations

Outline:

- Introduction
- Charm production
- Beauty production
- Conclusions

The HERA accelerator

Located near the DESY research center in Hamburg, Germany

27.5 GeV

920 GeV

820 GeV (before 1998)

Maximum center of mass energy: s = 318 GeV

The HERA ring: ~ 30 m below ground level

Erik Maddox

Instrumentation

Erik Maddox

HERA-running

- HERA I 1992-2000
 - Largest part of the data taken from 1996-2000
 - Data sample per experiment:
 - L≈100 pb⁻¹ e⁺p
 - L≈15 pb[.] e[.]p
- Heavy flavour measurements reported here are from HERA I sample

- HERA II 2001-...
 - Luminosity upgrade
 - Aimed at L≈1 fb⁻¹ in 2005.
 - Detector upgrades
 - Long start up phase
 - Background conditions were worse than expected
 - Modifications were necessary
 - Since October 2003
 - Luminosity running
 - Recorded up to now: ~30 pb⁻¹
 (ZEUS) ~40 pb⁻¹
 (H1)
 - HERA II program extended until 2007

ep kinematics

Q² = -(**k**-**k**')²: photon virtuality

 $x = Q^2/2P \cdot q$: fraction of proton four momentum of struck quark

Two regimes used for heavy flavour production

Deep Inelastic Scattering (DIS): Q² > 1 GeV²

Photoproduction (γp): Q² ~ 0 GeV²

Resolved and

Direct photoproduction

Heavy quark production at HERA

 \rightarrow Dominated by Boson-Gluon fusion (BGF)

Driven by gluon density in the proton
 Mass of heavy quark gives

 "hard scale" to the interaction

perturbative QCD should work...

Prediction of the cross section

Factorization: Photon structure \otimes Matrix element \otimes Proton structure

Erik Maddox

Measured channels at HERA

C/b quark fragments into hadrons and leptons

Decay		Measurement strategy	
$c \rightarrow D^{\star_{\pm}} \rightarrow D^{0} \pi^{\pm}$	*	Mass difference	blue needs microvertex detector. H1: CST (1997, HERA-I)
$c \rightarrow e^{-}$		Particle identity	
$c \rightarrow D^{0}, D^{\pm},$		Tracks, secondary vertex	
$b \rightarrow e^{-}, \mu^{\pm}$ and jet	*	p_t relative to jet axis, impact	
		parameter of lepton	ZEUS: MVD
$b \rightarrow D^{\star_{\pm}} \mu^{\pm}$		"Double tags"	(2001, HERA-
c,b → tracks in jet	*	Imp. Parameters	II) * Results are shown in this talk

$c \rightarrow D^*$ in DIS

- Reconstruction of D*(2010)→D°π(slow), D°→K π (and c.c)
- Signal regions
 1.80 < M(D⁰) < 1.92 GeV
 0.143 < △M < 0.148 GeV
- Investigate cross section for data bins in x, Q², p_t(D*) and η(D*)

p_t(D*) > 1.5 GeV, |η(D*)| < 1.5, **1.5 <Q²< 1000 GeV²** N(D*[±])=5545±129

Erik Maddox

$c \rightarrow D^*$ in DIS

Differential DIS D* cross section in η

- Good agreement with the NLO QCD calculations
- Error band represents theoretical uncertainties:
 - Charm mass
 - Factorization and renormalization scale
 - Fragmentation parameters
- 2 sets of proton PDFs functions are shown

Charm contribution to the proton structure function F_2

- Extraction of F₂(cc)
 - Data shown for fixed Q^2
 - Agreement between ZEUS and H1
 - Agreement with predictions NLO QCD fit from inclusive measurements.
 - Rise of $F_2(cc)$ for higher Q^2 .
 - Effected by the proton gluon density
 - Measurements verify the fitted gluon density from inclusive measurements.

Erik Maddox

BEACH 2004,

11

$F_2(cc)$ scaling violations

- $F_2(cc)$ for fixed x
 - Scaling violations \rightarrow F₂(cc) becomes steeper at lower x

Erik Maddox

 $F_2(cc)$

 Ratio of F₂(cc) and the proton structure function F₂

Charm contribution
 to DIS cross section
 rises up to 35%

Beauty production

- b quark has larger mass, smaller charge
 - Cross section ~200
 smaller than for charm
 - Theoretical predictions expected to be more reliable (larger mass)

HERA-I results for

 $b \rightarrow \mu j$ in photoproduction

 $b \rightarrow \mu j$ in DIS

b(and c) \rightarrow tracks in high Q² DIS

Event selection

- Photoproduction $p \rightarrow bbX \rightarrow \mu jjX$
 - DIS rejection
 - At least 2 jets
 - P, > 7,6 GeV
 - |η|<2.5
 - At least one muon linked to one of the jets.

Are H1/ZEUS dependent

Erik Maddox

BEACH 2004,

- DIS ep→ ebbX→eµjX
 - Scattered positron
 - At least 1 jet
 - P,* > 6 GeV
 - |η|<2.5
 - At least one muon linked to the jet

*Breit frame: (γ–parton CM frame)

Fraction of b quarks

H1 γ P (prel.): Combined max Likelihood fit (δ , p_T^{rel}): f_b =30.7±2.5 %

Erik Maddox

$b \rightarrow \mu$ in photoproduction

ZEUS

Comparisons in η_{μ} and $p_{\tau,\mu}$

30 dơ/dη^μ (pb) d ơ/d p¦ (pb/GeV dσ/dp∜(ep→ebbX→e jj μ X) do/dη^μ(ep → ebb X → e jj μ X) (a) (b) 25 p^µ⇒2.5 GeV ZEUS 96-00 NLO QCD x had NLO QCD 20 -----10 Pythia 6.2 Cascade 1.1 15 10 -1.6<η^μ<2.3 5 1 0 -1 2 10 0 1 6 8 p^µ(GeV) n۴

Good agreement between data and NLO!

$b \rightarrow \mu$ in photoproduction

Comparison ZEUS and H1 in $\eta_{\rm u}$

➢ H1 and ZEUS in agreement

Erik Maddox

Erik Maddox

- ZEUS differential measurements generally consistent with NLO QCD calculations
- Largest deviations for low Q², low x, high E_{t,jet}

$b \rightarrow \mu$ in DIS

experimental data in agreement with NLO QCD

$b \rightarrow \mu$ in DIS

Erik Maddox

BEACH 2004,

22

b,c→tracks in DIS

- New method used by H1
 - F2(cc) and F2(bb) for HERA I data by "Inclusive secondary vertexing"
 - Selection:
 - high Q² (>110 GeV) events.
 (3 bins in Q² and x defined.)
 - Well measured tracks (within jet) with extension to the silicon tracker

- Impact parameter significance: S=d/s(d)
 - Select the two highest significance tracks (S1 and S2)
- Light, charm and beauty fraction
 - Fit MC shapes for S_1 and S_2 for data in each bin.
 - Extract $F_2(cc)$ and $F_2(bb)$ from measured fractions and inclusive F_2 measurement

 S_1 and S_2 distributions

Erik Maddox

Measurement of $F_2(cc)$ and $F_2(bb)$

• $F_2(cc)/F_2$ and $F_2(bb)/F_2$

H1 PRELIMINARY

First look to new ZEUS Data

- $\boldsymbol{\cdot} \mathsf{D}^{\scriptscriptstyle +} \boldsymbol{\rightarrow} \mathsf{K}^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle +}$
- •D⁺ invariant mass signal measured with MVD (microvertex detector) fitted tracks
- Apply decay length significance cut > 5

Erik Maddox

Conclusions and outlook

- HERA I has made substantial contributions to
 - Understand the production of charm and beauty
 - Improve our knowledge about the structure of the proton and the photon
 - Uncertainties of the measurements and theoretical calculations are still large
 - More precise calculations are welcome and needed
 - HERA-II and the improved H1 and ZEUS detector will allow even deeper insight into these important topics of QCD.
- More interesting heavy flavour physics from HERA coming in the future.
 - HERA-II has really started since October 2003!

Heavy quarks as a tool

- The HERA experiments use charm and bottom signatures as a tool to study:
 - structure of resolved photons
 - Hard QCD scatter
 - Structure of the proton
 - Fragmentation

D* photoproduction

NLO Calculations: large theoretical uncertainties

→ Not yet possible to distinguish between different charm treatments

The H1 Detector

Erik Maddox

Visible b cross sections at HERA

Note: Comparison of measurements in different phase space

Erik Maddox

D⁺ candidate in DIS

Erik Maddox **BEACH 2004,**