

Spectroscopy in ep collisions at HERA

on behalf of the H1 and ZEUS collaborations

<u>OUTLINE</u>: Introduction Search for the glueball in the $K_s^0 K_s^0$ final state Search for the Strange Pentaquark Θ^+ Search for the Exotic baryon in the channels $\Xi \pi$ Search for the Charm Pentaquark decaying to D^*p

Summary

ep kinematics :

energy c.m. : $\sqrt{s} = 301-319$ GeV hadronic energy : W=m(γ *p) photon virtuality : Q² = -q² inelasticity : y = Q²/(x_{Bi} s)

two regimes : $Q^2 \approx 0 \text{ GeV}^2$: Photoproduction $Q^2 > 1 \text{ GeV}^2$: Electroproduction (DIS)

 $K_s^0 K_s^0$ - resonances

ZEUS HERA-I data (121 pb⁻¹) DIS ($Q^2 > 1 \text{ GeV}^2$) 866800 ± 1000 inclusive K⁰_e is used for:

- Glueball search (events with 2 K_s^{0})
- Strange pentaquark search

Search for the pentaquark $Q^2 > 20 \text{ GeV}^2$ Fit : background + two Gaussians $\chi^2/\text{ndf} = 35/44$ Statistical significance(from fit): $(221\pm48) \sim 4.6 \sigma$ Mass: $1521.5 \pm 1.5 (\text{stat})^{+2.8}_{-1.7} (\text{sys}) \text{ MeV}$ Gaussian width : $6.1 \pm 1.5 \text{ MeV}$ (Breit-Wigner fit gives width : $8 \pm 4 \text{ MeV}$) convoluted with gaussian-resolution of 2 MeV

inset : K_s^{0} -proton and K_s^{0} -antiproton •Signal is seen in both charges •fit to K_s^{0} -antiproton gives (96 ± 34) ~ 3 σ

•first observation of antipentaquark?

 $\Theta^{\pm} \text{cross section in the visible range}:$ $Q^{2} > 20 \text{ GeV}^{2}, 0.04 < y < 0.95$ $P_{T}(\Theta^{\pm}) \ge 0.5 \text{ GeV}, |\eta(\Theta^{\pm})| \le 1.5$ $\sigma(ep \rightarrow e\Theta^{\pm}X \rightarrow eK_{s}^{0}pX) =$ $= 125 \pm 27_{-28}^{+37} \text{ pb}$

D.Ozerov Spectroscopy in ep collisions at HERA

PALAISEAU (FRANCE)

25-29,2004

Search for the charmed pentaquark (with the decay $\Theta_{a} \rightarrow D^{*}p$ (+c.c.))

H1 search in DIS : $1 < Q^2 < 100 \text{ GeV}^2$ 75 pb⁻¹ 0.05 < y < 0.7

D.Ozerov Spectroscopy in ep collisions at HERA

Evidence of narrow resonance signal in D*p (+c.c.)

Signal at 3.1 GeV both in DIS and photoproduction samples

reasonable description by sum of :

- "wrong charge D⁰" (non charm induced background)
- D^{*} combined with random p (MC)

Poisson probability (4x10⁻⁸) for flat background (51.7 \pm 2.7 events) to fluctuate to 95 events corresponds to 5.4 σ

From the change in the maximum log-likelihoods of fits (w and w/o signal hypothesis) statistical significance is 6.2 σ

Search for the charmed pentaquark with ZEUS data sample

1995-2000 data (126 pb⁻¹)

No hint for the signal observed by H1 at 3099 MeV

D.Ozerov Spectroscopy in ep collisions at HERA

Comparison of H1 and ZEUS in similar phase space region

ZEUS didn't observe Θ_c signal in a data sample 1.7 times of H1 data sample.

Observation of ZEUS and H1 are not compatible

More quantitative comparisons require detector efficiency corrections.

Conclusion

- First observation in ep DIS of the states (in $K_s^0 K_s^0$): at mass 1537 MeV (possibly f'_2(1525)) at mass 1726 MeV (close to glueball candidate f_(1710))
- Evidence for a narrow baryonic state at mass 1521.5 MeV decaying to $K_s^{0}p$ (+ c.c.) in central fragmentation region. Consistent with the observed $\Theta(1540)$ pentaquark state.
- No evidence for the NA49 $\Xi\pi$ signal at 1862 MeV
- Evidence from H1 for the narrow resonance in D^{*}p system at mass 3099 MeV With larger statistics ZEUS does not see this signal

Backup slides

 $\label{eq:constraint} \begin{array}{l} Fit: background + 1 \ gaussian \\ \chi^2/ndf = 51/47 \\ Mass \ : 1522.2 \pm 1.5 \ MeV \\ Width: 4.9 \pm 1.3 \ MeV \\ (width \ consistent \ with \ the \\ experimental \ resolution) \end{array}$

D.Ozerov Spectroscopy in ep collisions at HERA

D.Ozerov Spectroscopy in ep collisions at HERA

D.Ozerov Spectroscopy in ep collisions at HERA

Improved calibration for the dE/dx (w.r.t. Θ^+ analysis)

resolution for dE/dx ~ 9 %

tuned using protons from $\Lambda(1116)$ decay

D.Ozerov Spectroscopy in ep collisions at HERA

Momentum distribution for the proton for signal region and sidebands

Signal is visible for the proton momentum > 2 GeV (without proton identification by dE/dx)

PALAISEAU (FRANCE)

25-29,2004

Expected signal for the charm pentaquark normalized to the rate of 1% of observed D^{*}

Expectation for the HERA II: plenty of lumi and new discoveries

D.Ozerov Spectroscopy in ep collisions at HERA

No signal in ZEUS data with the cuts close to H1

Glueballs and pentaquarks are not forbidden by QCD, but extremely interesting because they bring new information into the field

D.Ozerov Spectroscopy in ep collisions at HERA

ep kinematics :

energy c.m. : $\sqrt{s} = 300-318$ GeV hadronic energy : W=m(γ p)

photon virtuality : $Q^2 = -q^2$

two regimes : $Q^2 \approx 0 \text{ GeV}^2$: Photoproduction $Q^2 > 1 \text{ GeV}^2$: Electroproduction (DIS)

inelasticity : $y = Q^2/(x_{Bj} s)$ production elasticity : $z(D^*) = (E-p_z)/(2yE_e)$ pseudorapidity : $\eta = -\ln(\tan(\theta/2))$

HI detector

D.Ozerov Spectroscopy in ep collisions at HERA

D.Ozerov Spectroscopy in ep collisions at HERA

Ecole Polytechnique PALAISCAU (FRANCE) The possibility to identify protons by measuring ionization loss of particle in the tracker. Disadvantage of the method : good identification only at low momentum.

Cuts : bands in the (dE/dx,P) plane (different for positive and negative particles) dE/dx > 1.15 mips, P < 1.5 GeV => ~60% purity

$(\text{protons}-K_s^0) + (\text{antiprotons}-K_s^0)$

- Large (combinatorial) background
 Some structure at ~1525 MeV
- become visible for $Q^2 > 10 \text{ GeV}^2$ •at low $Q^2 (> 1 \text{ GeV}^2)$ signal is visib
- •at low Q² (> 1GeV²) signal is visible for low W

MC : ARIADNE (JETSET)

- normalized to data above 1.65 GeV
- does not reproduce the shape (missing Σ(1480)*, Σ(1560)** ... bumps in MC ?)

D.Ozerov Spectroscopy in ep collisions at HERA

Search for the charmed pentaquark (with the decay $\Theta_{a} \rightarrow D^{*}p$ (+c.c.))

H1 search in DIS : $1 < Q^2 < 100 \text{ GeV}^2$ 75 pb⁻¹ 0.05 < y < 0.7 $D^{*+} \rightarrow D^0 \pi_{a}^{+} \rightarrow (K^- \pi^+) \pi_{a}^{+}$ \underline{D}^0 : $P_{T}(K) > 0.5 \text{ GeV}$ $P_{T}(\pi) > 0.25 \text{ GeV}$ $P_{T}(K) + P_{T}(\pi) > 2 \text{ GeV}$ $|m(K\pi)-m(D^0)| < 60 \text{ MeV}$ $\underline{D}^*: P_{T}(\pi^+) > 0.12 \text{ GeV}$ $P_{T}(D^{*}) > 1.5 \text{ GeV}$ $-1.5 < \eta(D^*) < 1$ $|\Delta m(D^*) - m(D^*) + m(D^0)| < 2.5 \text{ MeV}$ $z(D^*) > 0.2$ $p: P_{T}(p) > 0.12 \text{ GeV}$ $L_{p} > 0.3$ for p(p) < 2 GeV $L_{2} > 0.1$ for p(p) > 2 GeV

EAU (FRANCE)

Signal at 3.1 GeV both in DIS and photoproduction samples reasonable description by sum of "wrong charge D^0 " and D^* combined with random p (MC)

ZEUS search 1995-2000 data (126 pb⁻¹)

Two D* decay channels: $D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow (K^-\pi^+)\pi_s^+$ $D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow (K^-\pi^+\pi^-)\pi_s^+$

PT(D*) > 1.35 GeV for $(K\pi)\pi_s$ PT(D*) > 2.8 GeV for $(K\pi\pi\pi)\pi_s$ $|\eta(D^*)| < 1.6$

 $N(D^*) \sim 62500 \text{ (inclusive)}$ $N(D^*) \sim 13500 \text{ (}Q^2 > 1 \text{ GeV}^2\text{)}$

Selection of proton by dE/dx (better calibrated w.r.t. Θ^+ analysis), cross checked and tuned using protons from Λ decays

No hint for the H1 signal in either distribution

