Diffractive jet and charm production

Ringberg Workshop, Sep. 28 – Oct. 3, 2003

Nikolai N. Vlasov

On behalf of H1 and ZEUS Collaborations

Ο U T L I N E

- Introduction
- Models of diffractive exchange
- Dijet Results
- $D^{*\pm}$ Results
- Diffractive 3-Jets
- Summary

Diffractive Selection

Kinematic variables

 Q^2 - photon virtuality $W^2 = (P + q)^2 - \gamma^* p$ CMS energy M_X - mass of diffractively produced

system

 M_{12} - mass of two jets or $c\bar{c}$ pair $x_{I\!\!P} = rac{M_X^2 + Q^2}{W^2 + Q^2}$ -

momentum fraction of diffractive exchange w.r.t. proton

$$z_{I\!\!P} = \frac{M_{12}^2 + Q^2}{M_X^2 + Q^2}$$
 or $z_{I\!\!P}^{(3jets)} = \frac{M_{123}^2 + Q^2}{M_X^2 + Q^2}$

 $(\beta = \frac{Q^2}{M_X^2 + Q^2})$ momentum fraction of diffractive exchange entering hard process

Factorisation in Diffraction

The combination of:

• QCD Hard Scattering Factorisation (Collins et al):

$$\frac{d^2\sigma(x,Q^2,x_{\mathbb{I\!P}},t)^{\gamma^*p\to p'X}}{dx_{\mathbb{I\!P}}dt} = \sum_i \int_x^{x_{\mathbb{I\!P}}} d\xi \hat{\sigma}^{\gamma^*i}(x,Q^2,\xi) p_i^D(\xi,Q^2,x_{\mathbb{I\!P}},t) \ (+highertwist)$$

- $\hat{\sigma}^{\gamma^*i}$ universal partonic cross sections, as in incl. DIS
- p_i^D diffractive parton distributions (conditional probabilities), obey NLO DGLAP

and:

• Regge Factorisation: $x_{\mathbb{P}}$, t dependance factorises out (Donnachie, Landshoff, Ingelman, Schlein)

$$F_2^D(x_{I\!\!P}, t, \beta, Q^2) = f_{I\!\!P/p}(x_{I\!\!P}, t) F_2^{I\!\!P}(\beta, Q^2)$$

• No proof in QCD; consistent with data at the present level of precision

If QCD Factorisation works, the diffractive pdf's should predict cross sections for jets and heavy quarks

Models of diffractive exchange

<u>Resolved Pomeron model</u> :

- Based on Regge theory with Pomeron exchange
- Treat $I\!\!P$ as object with substructure
- Jet and Charm Production in diffractive DIS \rightarrow probe gluon content of $I\!\!P$

 \bullet gluon-dominated ${I\!\!P}$

Examples :

- H1 QCD fit ("h1 fit2")

in LO RAPGAP

- NLO QCD code *DISENT* (Seymour)

c.f. Hautmann with

H1 2002 σ_r^D NLO QCD Fit

(Diffractive DIS jets)

- NLO QCD code *DHVQDIS* with H1 2002 σ_r^D NLO QCD Fit and fit by Alvero, Collins, Terron and Whitmore (*ACTW*) to ZEUS and H1 data. Gluon-dominated fits "B", "D" and "SG"

(Diffractive DIS D^*)

New H1 QCD Fits

- $[GeV^2] \bullet$ New LO and NLO QCD fits to 1997 6.5 H1 $F_2^{D(3)}$ data
 - First evaluation of experimental an theoretical uncertainties
 - LO gluon density around 30 % lower than 1994 fit; fits are consistent withing errors

Models of diffractive exchange

Perturbative QCD models:

- *t*-channel gluon exchange
- $\sigma \propto ({\bf gluon \ density})^2$
- Higher order processes $\gamma^* \rightarrow c \bar{c} g$ — cancels suppression for large masses

Examples :

- two-gluon exchange model implemented in RAPGAP generator Bartels et al. (*BJLW*); *unordered* k_T

two-gluon exchange "saturation"
 model implemented in SATRAP generator;

strongly ordered k_T : $p_T^g \ll p_T^q$

NLO Comparison with Diffractive DIS Jets

• <u>Published H1 data</u> :

(Eur. Phys. J. C20 (2001) 29) $4 < Q^2 < 80 \text{ GeV}^2, \ 0.1 < y < 0.7, \ x_{IP} < 0.05$ Jets: CDF cone, $p_{T,jet} > 4 \text{ GeV}$

Data corrected to $p_{T,1(2)} > 5(4)$ GeV (~ 25%) as NLO are unstable if $p_{T,1} \sim p_{T,2}$

• **DISENT NLO** Calculations :

 $\mu_R^2 = p_T^2, \ \mu_F^2 = 40 \ \text{GeV}^2$ Inner band : $0.25\mu_R^2 - 4\mu_R^2 \ (\sim 20\%)$ Hadronization corrections applied (~ 10\%) outer band is $hadr.corr \oplus \mu_R^2$ unc.

NLO Comparison with Diffractive DIS Jets

- Size of NLO corrections is higher for small Q^2 and p_T
- pdf uncertainty is not shown
- Reasonable agreement with Resolved Pomeron model (the NLO calculation uncertainties are very large though...)

Perturbative QCD Models Comparison with DIS Jets

• Dijets for $x_{\mathbb{P}} < 0.01$; $p_{T,rem}^{(\mathbb{P})}$ - remnant in the Pomeron

hemisphere in $\gamma^* I\!\!P$ c.m. frame

- Saturation model reproduces shapes of xsections; underestimates the rate by a factor of ~ 2
- Reasonable agreement with *BJLW* model for $p_{T,g}^{cut} = 1.5 \text{ GeV}$
- $q\bar{q}$ contribution is quite small
- Good description of the $p_{T,rem}^{(I\!\!P)}$ by both resolved Pomeron and BJLW.

The data are not able to discriminate between models with "soft" remnant and those with a third high- p_T parton.

Models Comparison with DIS 3-Jets

- Resolved Pomeron, "h1 fit2" pdf with parton shower model "MEPS" and color dipol approach "CDM"
- BJLW model for $p_{T,g}^{cut} = 1.5 \text{ GeV}$
- Agreement with "h1 fit2", CDM
- BJLW for x_ℙ < 0.01 is too low as
 3-jet sample originates from region x_ℙ > 0.01; higher multiplicity photon fluctuations (as qq̄gg) are not yet available in MC

Models Comparison with DIS 3-Jets

• <u>Published ZEUS data</u> :

(Phys. Lett. B 516 (2001))

$$5 < Q^2 < 100 \text{ GeV}^2, 200 < W < 250 \text{ GeV},$$

 $23 < M_X < 40 \text{ GeV}, x_{\mathbb{P}} < 0.025$
Jets: exclusive k_T -algorithm
 $\rho(\varphi) = \langle \frac{1}{\delta \varphi} \frac{E^{jet}(\varphi \pm \delta \varphi/2)}{E^{jet}} \rangle$

- Jet in Pomeron direction (most forward jet) is broader than jet in photon direction (most backward jet)
- Measurements described by model with gluon in $I\!\!P$ direction

Model Comparison with Diffractive DIS D^*

- <u>Published ZEUS data</u> :
 - $\begin{array}{ll} Lumi = 82 ~ {\bf pb}^{-1} ~ ({\bf DESY-03-094} ~) \\ 1.5 < Q^2 < 200 ~ {\bf GeV}^2, ~ 0.02 < y < 0.7, \\ x_{I\!\!P} ~ < ~ 0.035, ~ \beta < 0.8 \end{array}$

 $D* \to K\pi\pi$ $p_T(D^{*\pm}) > 1.5 \,{
m GeV}$ and $|\eta(D^{*\pm})| < 1.5$

• <u>ACTW NLO Calculations</u> :

Gluon dominated pdf "fit B" $\mu_R = \mu_F = \sqrt{Q^2 + 4m_c^2}$ The NLO error band : $1.3 < m_c < 1.6$ GeV Peterson fragmentation with $\epsilon = 0.035$ The probability for charm to fragment into a $D^{*\pm}$ meson was set to : $f(c \rightarrow D^{*+}) = 0.235$

• SATRAP describes well the region $x_{I\!\!P} < 0.035$

Model Comparison with Diffractive DIS D^*

- D^* for $x_{\mathbb{P}} < 0.01$
- Two-gluon exchange models :

SATRAP and BJLW using MC RAPGAP proton PDF GRV94HO,

$$f(c \to D^{*+}) = 0.235, \ m_c = 1.45 \ \text{GeV}$$

 $\mu_R = \mu_F = \sqrt{p_{c,T}^2 + 4m_c^2} \ k_{T,g}^{\text{cut}} = 1.5 \ \text{GeV}$

- Good agreement with *ACTW* NLO predictions with diffractive pdf "fit B"
- Good agreement with *BJLW* predictions and *saturation model*

Model Comparison with Diffractive DIS D^*

- <u>Published H1 data</u> :
 - (Phys. Lett. B520 (2001) 191) 2. $< Q^2 < 100 \text{ GeV}^2$, 0.05 < y < 0.7, $x_{I\!\!P} < 0.04$ $D* \to K\pi\pi$ $p_T(D^{*\pm}) > 2 \text{ GeV and } |\eta(D^{*\pm})| < 1.5$
- DHVQDIS NLO Calculations :

pdf H1 2002 σ_r^D NLO QCD Fit $\mu_R = \mu_F = \sqrt{Q^2 + 4m_c^2}$ Peterson fragmentation with $\epsilon = 0.078$ $m_c = 1.45$ GeV, $f(c \rightarrow D^{*+}) = 0.233$ Inner NLO band : $0.25\mu_R^2 - 4\mu_R^2$ (~ 20%) outer band also includes : $1.35 < m_c < 1.65$ GeV (±12%) $0.035 < \epsilon < 0.100$ (+21/ - 7%)

• Good agreement with DHVQDIS for $x_{\mathbb{P}} < 0.04$

Open-Charm Contribution to $F_2^{D(3)}$

The open-charm contribution to the diffractive structure function of the proton can be related to the cross section, measured in the full D^* kinematic region, by

$$\frac{1}{2f(c \to D^{*+})} \frac{\mathrm{d}^{3}\sigma_{ep \to eD^{*\pm}X'p}}{\mathrm{d}x_{I\!\!P}\mathrm{d}\beta\mathrm{d}Q^{2}} = \frac{4\pi\alpha_{em}^{2}}{Q^{4}\beta}(1-y+\frac{y^{2}}{2})F_{2}^{D(3),c\bar{c}}(\beta,Q^{2},x_{I\!\!P})$$

- The 3d differential cross section was measured & $log(\beta)$ for different Q^2 and $x_{\mathbb{P}}$ regions
- Extrapolation factors of the measured cross sections to the full $p_T(D^{*\pm})$ and $\eta(D^{*\pm})$ phase space were estimated using the ACTW NLO "fit B" predictions (~ 3.5)
- \bullet In each bin $F_2^{D(3),c\bar{c}}$ was determined using the formula

$$F_{2 \text{ meas}}^{D(3),c\bar{c}}(\beta_i, Q_i^2, x_{\mathbb{I}\!P,i}) = \frac{\sigma_{ep \to eD^{*\pm}X'p}^{i,\text{meas}}}{\sigma_{ep \to eD^{*\pm}X'p}^{i,\text{ACTW}}} F_{2 \text{ ACTW}}^{D(3),c\bar{c}}(\beta_i, Q_i^2, x_{\mathbb{I}\!P,i}),$$

where the cross sections σ^i in bin *i* are those for $p_T(D^{*\pm}) > 1.5$ GeV and $|\eta(D^{*\pm})| < 1.5$

Open-Charm Contribution to $F_2^{D(3)}$

- For all values of Q^2 and $x_{\mathbb{P}}$, $F_2^{D(3),c\bar{c}}$ rises as $\beta \to 0$
- The data exclude fits D and SG and concistent with B.

Strong sensitivity to the diffractive parton densities

Dijets with tagged \bar{p} at CDF

• The HERA pdf's used to predict the TEVATRON $p\bar{p} \rightarrow pX$ results

$$F_{jj}^{D}(\beta,\mu^{2}) = \{\beta g(\beta,\mu^{2}) + \frac{4}{9}\beta q(\beta,\mu^{2})\} \otimes f_{\mathbb{I}/p}(x_{\mathbb{I}})$$

- Prediction based on H1 pdf's one order of magnitude above CDF dat The breakdown of factorisation ?
- The diffractive rate is supressed due to secondary interactions with hadronic system (anti-proton break ing up) ?

Dijets in Diffractive Photoproduction

QCD Factorisation works in diffractive DIS; tested with charm and jets. Is it breaking in Photoproduction ? Quasi-real photon ($Q^2 \approx 0$) can fluctuate into hadronic system.

- x_{γ} momentum fraction of photon entering the hard process;
 - $x_{\gamma} = 1$ DIS-like direct interaction;
 - $x_{\gamma} < 1$ Resolved photon interaction, similar to hadron-hadron scattering

Dijets in Diffractive Photoproduction

- <u>Prelim. H1 data</u> :
 - $Q^2 < 0.01 \, {
 m GeV}^2, \, 165 < W < 240 \, {
 m GeV}, \ x_{I\!P} < 0.03$ Jets: inclusive k_T algoritm $p_{T,1(2)} > 5(4) \, {
 m GeV}$
- \underline{MC} :

LO RAPGAP \oplus parton showers $\mu_R = p_T^2$

• New 2002 LO fit from H1 describes data well

Dijets in Diffractive Photoproduction

- New 2002 LO fit from H1 describes direct and resolved contribution
- Direct comparison DIS vs γp :

$$\frac{\left(\frac{Model}{Data}\right)_{\gamma p}}{\left(\frac{Model}{Data}\right)_{DIS}} = 1.25 \pm 0.30(exp.)$$

• No supression of γp with respect to the DIS diffractive jets

Summary

- Consistent picture of inclusive diffraction and hadronic final states in DIS. QCD Factorisation even works in dijet photoproduction in HERA. The breakdown of factorisation in CDF ?
- \bullet Resolved Pomeron model is successful in description of DIS Jet and D^* data
- Two-gluon-exchange BJLW model describes DIS Jet and D^* cross sections for $x_{\mathbb{P}} < 0.01$, if a minimum value for the transverse momentum of the final-state gluon of $k_{T,q}^{\text{cut}} = 1.5 \text{ GeV}$
- Two-gluon-exchange saturation model reproduces D^* cross sections but underestimates the rate of dijets by a factor of ~ 2
- Significant contribution of $q\bar{q}g$ with gluon emitted in $I\!\!P$ direction

Prospects at HERA II

- New tools for diffraction:
 - Factor ~ 10 increase in statistics by the end 2006
 - New proton spectrometer (H1 VFPS)
- Measured with VFPS 0.01 < x_{IP} < 0.02 region with acceptance close to 100 % gives high yields of exclusive final state channels to test pdfs;
 e.g. ~ 30000 DIS dijets, 500 DIS D*
- New HERA II data are coming;
 - will permit to constrain diffractive model parameters;
 - will require further model developments