Effects of e⁺ Polarization on the Final States at HERA

Ringberg Workshop

New Trends in HERA Physics 2003 28 September - 3 October 2003

Uta Stösslein (DESY Hamburg)

Ringberg Workshop 2003

Uta Stösslein – Effects of e[±] Polarization on the Final States at HERA

Outline

😼 HERA II

- Polarization Dependent Inclusive Cross Section CC, NC
- Deeply Virtual Compton Scattering cross section, asymmetries
- **Asymmetries in Particle Production**
- **Weam Spin Transfer to Λ-Baryons**
- **& Conclusion**

The HERA II Beam Options

e-beam

- e⁺ and e⁻ → beam charge dependencies
- Iongitudinally parallel/anti-parallel polarizations with expected values up to 50-60% with a precision of δP/P~1% → beam spin dependencies
- → enhanced physics potential !

high luminosity

• up to 1fb⁻¹ until 2006,

i.e. about 200pb⁻¹ per sample e $(\lambda = \pm 1)$, e $(\lambda = \pm 1)$, e $(\lambda = \pm 1)$ expected and wanted

but p-beam unpolarized still !

no access to polarized proton and photon PDFs (requires double spin asymmetries)

The Classic's...

"Classic" Goal (I): Search for Right-Handed Currents in CC DIS

forbidden in Standard Model: $\sigma_{cc} \rightarrow 0$ for e_R^{\pm}

→ textbook measurement !

Simulation of
$$\sigma^{\pm}_{CC}(\lambda)$$

 $\sigma_{cc}^{\pm} = \frac{2\pi a^{2}}{\mathbf{x}Q^{4}} \kappa_{w}^{2}(Q^{2}) \frac{1 \pm \lambda}{2} (Y_{+}W_{2}^{\pm} \mp Y_{-}XW_{3}^{\pm})$
 $with Y_{+} = 2 - 2y + y^{2}/(1 + R)$
 $\gamma_{-} = 1 - (1 - y)^{2}$
 $\kappa_{w} = \frac{Q^{2}}{Q^{2} + M_{w}^{2}} \frac{1}{4 \sin^{2} \theta_{w}} \approx 1$ for $Q^{2} \gg M_{w}^{2}$
Sopb⁻¹ per $\lambda = \pm 0.6$
 \Rightarrow modest luminosity but
high polarization needed
 \Rightarrow new physics beyond SM
if any deviation
from straight line
Makenta
DISO2
 $k = p \text{ Bata (HS pb^{4})}$
 $k = e^{p} \text{ SM} (MC)$
 $k = e^{p} \text{ SM}$

"Classic" Goal (II): Parity Violation in NC

interference of electromagnetic and weak neutral currents
 vector (v) and axial-vector (a) contributions

$$\frac{d\sigma_{int}^{\mp}(\lambda)}{dQ^{2}dv} = \frac{2\pi\alpha^{2}}{xQ^{4}}\kappa_{z}\left(Q^{2}\right)\left\{Y_{+}\left(R=0\right)G_{2}\left(-v_{e}\pm\lambda a_{e}\right)+Y_{x}G_{3}\left(\mp a_{e}+\lambda v_{e}\right)\right\}$$

- depending both on beam polarization λ and beam charge (±)
- new structure functions G₂ and xG₃ containing quark couplings to the Z boson

$$\begin{split} \mathbf{G}_{2}(\mathbf{x}) &= \mathbf{2}\mathbf{x}\Sigma_{q}\mathbf{v}_{q}\mathbf{e}_{q}\left(\mathbf{q}(\mathbf{x}) + \overline{\mathbf{q}}(\mathbf{x})\right) \\ \mathbf{x}\mathbf{G}_{3}(\mathbf{x}) &= -\mathbf{2}\mathbf{x}\Sigma_{q}\mathbf{a}_{q}\mathbf{e}_{q}\left(\mathbf{q}(\mathbf{x}) - \overline{\mathbf{q}}(\mathbf{x})\right) \\ \mathbf{x}\mathbf{G}_{3}(\mathbf{x}) &= -\mathbf{2}\mathbf{x}\Sigma_{q}\mathbf{a}_{q}\mathbf{e}_{q}\left(\mathbf{q}(\mathbf{x}) - \overline{\mathbf{q}}(\mathbf{x})\right) \\ \mathbf{x}\mathbf{G}_{3}(\mathbf{x}) &= -\mathbf{2}\mathbf{x}\Sigma_{q}\mathbf{a}_{q}\mathbf{e}_{q}\left(\mathbf{q}(\mathbf{x}) - \overline{\mathbf{q}}(\mathbf{x})\right) \\ \mathbf{x}\mathbf{G}_{3}(\mathbf{x}) &= -\mathbf{2}\mathbf{x}\mathbf{x}\mathbf{x}_{q}$$

Asymmetries in NC DIS

varying beam polarization [ed: SLAC 1978]

→ one *parity-violation asymmetry* per beam charge

$$\mathbf{A}^{\mp}\left(\lambda_{1},\lambda_{2}\right) = \frac{\mathbf{d}\sigma^{\mp}\left(\lambda_{1}\right) - \mathbf{d}\sigma^{\mp}\left(\lambda_{2}\right)}{\mathbf{d}\sigma^{\mp}\left(\lambda_{1}\right) + \mathbf{d}\sigma^{\mp}\left(\lambda_{2}\right)} = -\kappa_{Z} \frac{\lambda_{1}^{-\lambda} - \lambda_{2}}{2} \left(\mp \mathbf{a}_{e} \frac{\mathbf{G}_{2}}{\mathbf{F}_{2}} + \underbrace{\mathbf{v}_{e}}_{\mathbf{F}_{2}} \underbrace{\mathbf{x}_{G}_{3}}_{\mathbf{1} - (1 - y)^{2}} \right)$$

varying of both λ and beam charge [μ C: BCDMS 1981] \rightarrow 'beam conjugation' asymmetry ~ 1 for $y \rightarrow 1$

$$B(\lambda_{1}, \lambda_{2}) = \frac{d\sigma^{+}(\lambda_{1}) - d\sigma^{-}(\lambda_{2})}{d\sigma^{+}(\lambda_{1}) + d\sigma^{-}(\lambda_{2})} \qquad \simeq -\kappa_{Z} \left(\begin{array}{c} a_{e} + \frac{\lambda_{1} - \lambda_{2}}{2} v_{e} \end{array} \right) \frac{xG_{3}}{F_{2}} \frac{1 - (1 - y)^{2}}{1 + (1 - y)^{2}} \\ unpol. \gamma Z \text{ -interference} \end{array}$$

contribution

→ measurements require high polarization values and high Q2 values $\kappa_z = \frac{1}{4\cos^2\theta_w \sin^2\theta_w} \frac{Q^2}{M_z^2 + Q^2} \simeq 1.7 \cdot 10^{-4} Q^2 / \text{GeV}^2$

Simulation of $G_2(x,Q^2)$ at high Q^2

for $\lambda_2 = -\lambda_1$ and $v_e = 0$:

using approximation:

$$\begin{aligned} A^{\mp}(\lambda) &= \mp \kappa_{z} \lambda a_{e} \frac{\frac{G_{2} \times 1}{F_{2}} \sim \pm \kappa_{z} \lambda}{F_{2}} \frac{1 + d_{v} / u_{v}}{4 + d_{v} / u_{v}} \\ F_{2} &\simeq \frac{1}{9} \times \left(4 \left(u + \overline{u} \right) + \left(d + \overline{d} \right) \right) \xrightarrow{3}{} Singlett + Non-Singlett} \\ G_{2} &\simeq \frac{2}{9} \times \left(\left(u + \overline{u} \right) + \left(d + \overline{d} \right) \right) \xrightarrow{3}{} Singlett \end{aligned}$$

 \rightarrow extraction of G₂(x,Q²) using knowledge of F₂(x,Q²)

11

The "New" Classic's...

Deeply Virtual Compton Scattering

DVCS

Bethe-Heitler

new info on structure of nucleon!

diffractive production of a real photon $d^{4}\sigma/dxdQ^{2}d|t|d\phi \propto |\tau_{DVCS}|^{2} + |\tau_{BH}|^{2} + |\tau^{*}_{DVCS}\tau_{BH}| + |\tau_{DVCS}\tau_{BH}^{*}|$ DVCS : QCD process \rightarrow sensitive to underlying dynamics Bethe-Heitler : QED process \rightarrow background and interference **DVCS : Models**

GPD based models

> GPD incorporate both a partonic and distributional amplitude behavior

→ access to dynamical relation between different partons (particle correlations, orbital angular momentum)

➔ three-dimensional distribution of nucleon substructure

QCD picture (hard scattering factorization: LO, beyond LO, beyond twist-2)

Color Dipole based models

> simple unified picture
of diffractive processes

→ match soft and hard regimes

→ implementation of

- e.g. saturation effects
- > broad phenomenology

Nucleon Holography

[V.Belitsky, D.Müller,hep-ph/0206306] [M.Burkhardt,PRD62(2000)071503]

GPD provide transverse location of partons in the nucleon

DVCS : Experimental Signatures

[hep-ex/0305028]

\rightarrow W dependence matches W^{0.7} behavior of hard VM production

DVCS : Cross Section vs Q²

→ Q2 dependence well described by GPD or color dipole based models (integrated over exp. t range)

→ HERAII : factor 10 more statistics expected

Ringberg Workshop 2003

Uta Stösslein – Effects of e[±] Polarization on the Final States at HERA

[V.Belitsky et al., hep-ph/0112108]

$$\begin{split} \mathbf{B} \mathbf{H} & |\mathcal{T}_{\rm BH}|^2 = \frac{e^6}{x_{\rm B}^2 y^2 (1+\epsilon^2)^2 \Delta^2 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left\{ c_0^{\rm BH} + \sum_{n=1}^2 c_n^{\rm BH} \cos\left(n\phi\right) + s_1^{\rm BH} \sin\left(\phi\right) \right\} \,, \\ \mathbf{DVCS} & |\mathcal{T}_{\rm DVCS}|^2 = \frac{e^6}{y^2 \mathcal{Q}^2} \left\{ c_0^{\rm DVCS} + \sum_{n=1}^2 \left[c_n^{\rm DVCS} \cos(n\phi) + s_n^{\rm DVCS} \sin(n\phi) \right] \right\} \,, \\ \mathbf{Interference} & \pm e^6 \\ & \mathcal{I} = \frac{\pm e^6}{x_{\rm B} y^3 \Delta^2 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left\{ c_0^{\mathcal{I}} + \sum_{n=1}^3 \left[c_n^{\mathcal{I}} \cos(n\phi) + s_n^{\mathcal{I}} \sin(n\phi) \right] \right\} \,, \end{split}$$

→ Complex and rich angular structure of the cross section! → But, which angular dependencies are the relevant ones?

Ringberg Workshop 2003

Uta Stösslein – Effects of e[±] Polarization on the Final States at HERA

Contributions for an Unpolarized p

employ angular structure to access more observables, in particular in dependence on beam spin (λ) and charge (±)

> DVCS amplitude with gluon transversity (twist-2, but α_s power supp.) :

- squared DVCS term : $\cos 2\phi$ and $\sin 2\phi$ dependencies
- interference term : $\cos 3\phi$ and $\sin 3\phi$ dependencies

> BH term: beam polarization dependence only in case of longitudinally or transversely (L,T) polarized target!

Beam Charge and Azimuthal Asymmetry

varying beam charge [HERMES 2002] beam charge asymmetry (CA)

$$CA = \frac{2\int_0^{2\pi} d\phi \, \cos(\phi)(d\sigma^+ - d\sigma^-)}{\int_0^{2\pi} d\phi \, (d\sigma^+ + d\sigma^-)} \qquad \propto c_{1,\rm unp}^{\mathcal{I}} - \frac{1}{3}c_{3,\rm unp}^{\mathcal{I}} - \frac{2(3-2y)}{2-y}\frac{K}{1-y}\left(c_{0,\rm unp}^{\mathcal{I}} - \frac{1}{3}c_{2,\rm unp}^{\mathcal{I}}\right)$$

or counting events scattered 'up' and 'below' lepton scattering plane to get cos ϕ weight \rightarrow 2 bins in ϕ

$$\Delta d\sigma^{\text{unpol}} = d\sigma^{-,\text{tot}} - d\sigma^{+,\text{tot}}$$
$$CA = \frac{\int_{-\pi/2}^{\pi/2} \Delta d\sigma^{\text{tot}} - \int_{\pi/2}^{3\pi/2} d\phi \,\Delta d\sigma^{\text{tot}}}{\int_{0}^{2\pi} d\phi \,d\sigma^{\text{tot}}}$$

 $CA \sim \textbf{Re} (\tau_{BH} \cdot \tau_{\textbf{DVCS}})$

varying azimuthal angle (beam spin and charge fixed) *azimuthal angle 'asymmetry* ' (AAA)

$$AAA = \frac{\int_{-\pi/2}^{\pi/2} d\phi (d\sigma - d\sigma^{BH}) - \int_{\pi/2}^{3\pi/2} d\phi (d\sigma - d\sigma^{BH})}{\int_{0}^{2\pi} d\phi d\sigma}$$

... requires very good ϕ resolution
and control of twist-3 contamination $AAA \sim \text{Re}(\tau_{BH}, \tau_{DVCS})$

Beam Spin Asymmetry

varying beam polarization [HERMES, CLAS 2001] one beam spin asymmetry (SSA) per beam charge

$$SSA = \frac{2\int_0^{2\pi} d\phi \, \sin(\phi)(d\sigma^{\uparrow} - d\sigma^{\downarrow})}{\int_0^{2\pi} d\phi \, (d\sigma^{\uparrow} + d\sigma^{\downarrow})} \qquad \propto s_{1,\mathrm{unp}}^{\mathcal{I}} - \frac{2(3-2y)}{3(2-y)} \frac{K}{1-y} s_{2,\mathrm{unp}}^{\mathcal{I}} - \frac{(1-y)(2-y)\Delta^2}{y\mathcal{Q}^2} x_{\mathrm{B}} s_{1,\mathrm{unp}}^{\mathrm{DVCS}} + \frac{1}{2} \sum_{j=1}^{2\pi} \frac{1}{j} \sum_{j=1}^{2\pi} \frac$$

or counting events scattered 'up' and 'below' rotated-by-90° lepton scattering plane (*left* and *right*) to get sin ϕ weight \rightarrow 2 bins in ϕ

$$\Delta \sigma = d\sigma^{+} - d\sigma^{-}$$

$$SSA = \frac{\int_{0}^{\pi} d\phi \, \Delta \sigma - \int_{\pi}^{2\pi} d\phi \, \Delta \sigma}{\int_{0}^{2\pi} d\phi \, d\sigma^{\text{tot}}}$$

SSA ~ **Im** (τ_{BH} · τ_{DVCS})

Combination of SSA and CA or AAA gives access to full twist-2 τ_{BH}· τ_{DVCS} amplitude BH contributions absent in CA and SSA measurements

Unveiling GPD H

unveiling GPDs from determination of Fourier coefficients obtained from asymmetry measurements

complete seperation of GPD would require *in addition* data taken with polarized (T,L) target

[A.Freund, hep-ph/0306012]

CA Simulation for HERA

integrated over t, -t<0.5GeV², and over ϕ

Uta Stösslein – Effects of e[±] Polarization on the Final States at HERA

[A.Freund, hep-ph/0306012]

SSA Simulation for HERA (e⁺p)

Ringberg Workshop 2003

Uta Stösslein – Effects of e[±] Polarization on the Final States at HERA

Some Measurement Remarks

φ and t are difficult to measure since scattered proton is *not* observed

$$\boldsymbol{\phi} = \boldsymbol{\phi}_{e'} - \boldsymbol{\phi}_{p'} \approx \boldsymbol{\phi}_{e'} - \boldsymbol{\phi}_{\gamma}$$
$$\mathbf{t} = (\mathbf{p} - \mathbf{p}')^2 \approx -|\vec{\mathbf{p}}_{T_e} + \vec{\mathbf{p}}_{T_{\gamma}}|^2$$

→ determination of φ and t via scattered e' and γ :

DVCS : backward e' and central γ and veto on p-diss background (\rightarrow forward instrumentation)

- At dominated by E and θ resolution of γ
- $\Delta \phi$ dominated by E resolution of e'

Ringberg Workshop 2003

Uta Stösslein – Effects of e[±] Polarization on the Final States at HERA

Simulations for HERA : Some Remarks

 CA and SSA asymmetries predicted to be sizeable, calculations in LO, NLO, and twist-3 available, see also [V.Belitsky et al.,hep-ph/0112108]
 → changing of t cut-off to 1GeV² alters results on 10% level

- AAA predicted to have similar size as CA
- twist-3 effects estimated to be negligible for CA and for SSA
- NLO corrections are large, up to 100% for CA and up to 50% for SSA (large NLO gluon contribution in real part of DVCS amplitude)
- \rightarrow NLO corrections important for precision extraction of GPDs

 in general: cross section and asymmetry data can be well modeled, but too many parameters not constrained yet!
 asymmetry measurements feasible!

[V.Belitsky, D.Müller, hep-ph/0307369]

Time-like Virtual Compton Scattering

electroproduction of muon pairs allows clear study of GPDs via **single beam spin**, single hadron spin, **beam charge**, azimuthal and double spin asymmetries employing angular dependencies of recoiled p and of lepton pair H_{val}^{u}

→ mapping in both scaling variables η and ξ → constrain angular momentum sum rule:

$$\int_{-1}^{1} d\xi \,\xi \left(H_{q,g}(\xi,\eta,\Delta^2) + E_{q,g}(\xi,\eta,\Delta^2) \right) = 2J_{q,g}$$

but cross section very small → high luminosity!

Ringberg Workshop 2003

Uta Stösslein – Effects of e[±] Polarization on the Final States at HERA

Another view on the angular momentum sum rule

$$\begin{split} J^{q} &= \lim_{\Delta \to 0} \sum_{i=u,d,s} \frac{1}{2} \int_{-1}^{1} dx \; x \left\{ H^{i}(x,\xi,\Delta^{2},\mathcal{Q}^{2}) + E^{i}(x,\xi,\Delta^{2},\mathcal{Q}^{2}) \right\} \\ &= \frac{1}{2} \left\{ \left(1 + \kappa_{p} + \kappa_{n}/2 \right) P^{u_{\text{val}}} + \left(1 + \kappa_{p} + 2\kappa_{n} \right) P^{d_{\text{val}}} + \left(1 + \kappa_{\text{sea}} \right) P^{\text{sea}} \right\} \end{split}$$

with proton and neutron magnetic moments

 $\kappa_p = 1.793$ and $\kappa_n = -1.913$

÷.

and κ_{sea} is the orbital angular momentum carried by the quarks

momentum fraction Pⁱ carried by the quarks can be deduced from DIS data alone

Elastic Particle Production

select different GPDs (and quark flavors) via detection of different final states

vector mesons : H, E, e.g. $\rho^0 \rightarrow 2J_u + J_d$ [X.Ji,hep-lat/0211016] pseudoscalar mesons : \tilde{H}, \tilde{E}

transitions within the baryon octet : transition GPDs, e.g. $H_{p->\Lambda}^{su}$ but additional complication due to presence of distribution amplitude of the particle, e.g. the pion wave function \rightarrow for unpol. e beam and transv. pol. target large asymmetries have been predicted, see e.g. [K.Goeke et al, hep-ph/0106012]

 \rightarrow HERMES, CLAS, COMPASS

→special : exclusive strangeness production $\gamma_L^* \mathbf{p} \rightarrow \mathbf{K}^+ \Lambda$ where an azimuthal spin asymmetry can be measured on an *unpolarized* target by measuring the polarization of the recoiling hyperon through its angular distribution

 \rightarrow not studied yet for HERA

Single Spin Asymmetry in π electroproduction

CLAS: first observation of a positive SSA in SiDIS π^+ production $A_{LU}^{\sin\phi} = \frac{2}{P^{\pm}N^{\pm}} \sum_{i=1}^{N^{\pm}} \sin \phi_i$

but expected to be zero in LO
 → related to either NLO or higher twist effect

NLO : [A.Afanasev,C.E.Carlson,hep-ph/0308163] final state gluon exchange deliver contribution to anti-symmetric part of hadronic tensor $\frac{q}{p} + \frac{q+r}{p} + \frac{q+k}{p} + \frac{q+r}{p} + \frac{q+k}{p} + \frac{q+r}{p} + \frac{q+r}$

<u>[CLAS,hep-ex/0301005]</u>

0.06

0.04

0.02

0.4

0.3

х

0

0.5

0.6

0.7

0.8

z

[∲]⊒^{0.04}

0.02

0

→ lepton beam spin asymmetry is generated due to interference between absorption of longitudinal and transverse virtual photons

 $A_{LU} \sim r_T / \sqrt{Q^2}$ with transverse component of the final quark momentum r_T

twist-3 : [A.V.Efremov et al.,hep-ph/0208124] SSA arises from chirally odd twist-3 proton distribution function e^a(x) in combination with chirally-odd and T-odd twist-2 Collins FF

very interesting to test it also at HERA

[M.Anselmino,hep-ph/0302008]

quarks in unpolarized

nucleon

Beam Spin Transfer to Λ-Baryon

and the spin transfer from N to Λ (with an unpolarized lepton)

$$P_{0+} = \frac{d\sigma_{0+}^{\Lambda_+} - d\sigma_{0+}^{\Lambda_-}}{d\sigma^{\Lambda}} = \frac{\sum_q e_q^2 \,\Delta q(x) \,\Delta D_{\Lambda/q}(z)}{\sum_q e_q^2 \,q(x) \,D_{\Lambda/q}(z)} \,\cdot$$

33

Ringberg Workshop 2003

Uta Stösslein – Effects of e[±] Polarization on the Final States at HERA

Longitudinal **A** Polarization

parity violating weak deacy of $\Lambda \rightarrow p\pi$ \Rightarrow distribution of decay angle θ^* depends on Λ pol. P : I(θ^*) ~ 1 - α P cos θ^* (α =0.64) \equiv exp.: P^ = P_{beam} D(y) S^ \Rightarrow requires high beam pol. and high y

→ Λ could contain polarized quark! → using relation pol FF pol PDF Gribov-Lipatov `reciprocity' relation [1971]

$$S^{\Lambda}_q = \frac{\Delta D^{\Lambda}_q}{D^{\Lambda}_q} = \frac{\Delta q^{\Lambda}}{q^{\Lambda}}$$

→ study ∧ spin structure and test SU(3)_f: [e.g. B.Ma et al., hep-ph/0208122]

<mark>Λ spin</mark>

[C.Risler,H1,PhDthesis]

more data needed ! measurements seems to be feasible

 $\begin{array}{ll} \pi \text{ momentum parallel} & \text{antiparallel} \\ \text{to } \Lambda \text{ flight direction} \end{array}$

HERA II with high luminosity and with longitudinally polarized electrons and positrons opens new horizons to study electroweak theory and parton dynamics

and

may deliver even surprises we could not imagine today...

For fruitful discussions I like to thank Markus Diehl, Andreas Freund, Marco Stratmann, Christiane Risler.